• 제목/요약/키워드: quasi-static cyclic load

검색결과 72건 처리시간 0.019초

유리섬유 보강 원형 철근콘크리트 교각의 내진성능에 관한 준정적 실험연구 (Quasi-Static Test for Seismic Performance of Circular R.C. Bridge Piers Before and After Retrofitting)

  • 정영수;이강균;한기훈;이대형
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.107-118
    • /
    • 1999
  • 10 RC bridge piers have been made on a 1/3.4 scale model, and six piers of them were retrofitted with glassfiber. The have been tested in the quasi-static cyclic load so as to investigate their seismic enhancement before and after retrofitting with glassfibers. The objective of this experimental study is to investigate how to strength the ductility of reinforced concrete bridge piers which have been nonseismically designed and constructed in Korea before 1992. Important test parameters are axial load, load pattern, retrofit type. Glassfiber sheets were used for retrofitting in the plastic hinge region of concrete piers. The nonlinear behavior of bridge columns have been evaluated through their yield and ultimate strength, energy dissipation, displacement ductility and load-deflection characteristics under quasi-static cyclic loads. It can be concluded from the test that concrete piers strengthened with glassfibers have been enhanced for their ductile behavior by approximate 50%.

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • 제23권2호
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.

단일주 원형 철근콘크리트 교각의 내진거동에 관한 준정적 실험 (Quasi-Static Tests for Seismic Performance of Circular RC Bridge Piers)

  • 정영수;이강균;한기훈;박종협
    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.55-66
    • /
    • 1999
  • 본 연구는 철도, 도시고속화도로 및 고속도로 교량의 교각으로 많이 이용디고 있는 철근콘크리트 기둥으 내진성능 평가에 관한 quasi-static 실험으로서 사용된 실험 변수는 축하중 내진설계유무에 따른 띠철근량 변위제어 하중형태 등을 채택하였다 RC 기둥시험체는 수원에 위치한 하갈교의 교각을 1/3.4의 축소모델로 하여 내진설계된 단면과 내진설계되지 않은 시험체를 각각 4개씩 총 8개를 제작하였으며 소성힌지구간에서 띠철근의 간격은 2.2cm 및 4.4cm 이다 실험변수에 따른 내진 및 비내진 시험체의 내진성능검토를 위하여 충진콘크리트 교각의 하중변위 이력특성 연성능력, 강도감소, 에너지 흡수능력, 등가점성계수 등을 실험적으로 분석조사하였다. '96년 개정된 도로교시방서의 RC기둥에 관한 내진설계기준은 AASHTO(1992)와 유사한 것으로서 중.약지진 지역으로 구분되는 국내의 실정에는 다소 과다설계로 판단된다. 실험결과 비내진설계된 콘크리트 교각도 어느 정도의 연성능력을 발휘한 것으로 조사되었으나 추가의 충분한 실험연구가 요구된다. 그러나 비내진설계교각도 적절한 내진보강방안을 강구한다면 우수한 내진성능을 발휘할수 있으리라판단된다.

  • PDF

구조용단열패널의 정적가력과 반복가력 성능 평가 (Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels)

  • 나환선;이현주;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제4권1호
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

Modeling of non-seismically detailed columns subjected to reversed cyclic loadings

  • Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.163-178
    • /
    • 2012
  • A strut-and-tie model is introduced in this paper to predict the ultimate shear strength of non-seismically detailed columns. The validity and applicability of the proposed strut-and-tie model are evaluated by comparison with available experimental data. The model was developed based on visible crack patterns observed on the test specimens. The concrete contribution is integrated into the strut-and-tie model through a concept of equivalent transverse reinforcement. To further validate the model a full-scale non-seismically detailed reinforced concrete column was tested to investigate its seismic behavior. The specimen was tested under the combination of a constant axial load, $0.30f_c{^{\prime}}A_g$ and quasi-static cyclic loadings simulating earthquake actions. Quasi-static cyclic loadings simulating earthquake actions were applied to the specimen until it could not sustain the applied axial load. The analytical results reveal that the strut-and-tie method is capable of modeling to a satisfactory accuracy the ultimate shear strength of non-seismically detailed columns subjected to reserved cyclic loadings.

강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가 (Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity)

  • 조창빈;서진환;장승필
    • 한국지진공학회논문집
    • /
    • 제6권2호
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

철근콘크리트 교각의 내진성능에 관한 준정적 실험 (Quasi-Static Tests for seismic performance of RC bridge piers)

  • 이강균;한기훈;정영수;이대형;황의승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.615-620
    • /
    • 1998
  • The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete piers subjected to quasi-static cyclic loads, which have been used in large numbers for railway and urban transportation facilities. Important test parameters are hoop ratio, axial load, loading type, and the behaviors f members have been evaluated through limit states of crack occurrence, yielding and ultimate state of member, ductility and load-deflection loop can be secured by considering the influence of hoop reinforcement ratio and axial load, and that plastic hinge length and ductility ar determined by the combination of the quantities of hoop reinforcement and axial load.

  • PDF

준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구 (Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier)

  • 정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

고속철도용 윤축의 정${\cdot}$동적파괴인성 평가 (Static and Dynamic Fracture Toughness of Wheelset for High Speed Train)

  • 권석진
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.210-215
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.