• Title/Summary/Keyword: quasi-linear model

Search Result 116, Processing Time 0.028 seconds

A Study for Recent Development of Generalized Linear Mixed Model (일반화된 선형 혼합 모형(GENERALIZED LINEAR MIXED MODEL: GLMM)에 관한 최근의 연구 동향)

  • 이준영
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.541-562
    • /
    • 2000
  • The generalized linear mixed model framework is for handling count-type categorical data as well as for clustered or overdispersed non-Gaussian data, or for non-linear model data. In this study, we review its general formulation and estimation methods, based on quasi-likelihood and Monte-Carlo techniques. The current research areas and topics for further development are also mentioned.

  • PDF

Nonlinear Controller Design of Active Magnetic Bearing Systems Based on Polytopic Quasi-LPV Models (Polytopic Quasi-LPV 모델 기반 능동자기베어링의 비선형제어기 설계)

  • Lee, Dong-Hwan;Park, Jin-Bae;Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.797-802
    • /
    • 2010
  • In this paper, a systematic procedure to design a nonlinear controller for nonlinear active magnetic bearing (AMB) systems is presented. To do this, we effectively convert the AMB system into a polytopic quasi-linear parameter varying (LPV) system, which is a representation of nonlinear state-space models and is described by the convex combination of a set of precisely known vertices. Unlike the existing quasi-LPV systems, the nonlinear weighting functions, which construct the polytopic quasi-LPV model of the AMB system by connecting the vertices, include not only state variables but also the input ones. This allows us to treat the input nonlinearity effectively. By means of the derived polytopic quasi-LPV model and linear matrix inequality (LMI) conditions, nonlinear controller that stabilizes the AMB system is obtained. The effectiveness of the proposed controller design methodology is finally demonstrated through numerical simulations.

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

Sequential Adaptation Algorithm Based on Transformation Space Model for Speech Recognition (음성인식을 위한 변환 공간 모델에 근거한 순차 적응기법)

  • Kim, Dong-Kook;Chang, Joo-Hyuk;Kim, Nam-Soo
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • In this paper, we propose a new approach to sequential linear regression adaptation of continuous density hidden Markov models (CDHMMs) based on transformation space model (TSM). The proposed TSM which characterizes the a priori knowledge of the training speakers associated with maximum likelihood linear regression (MLLR) matrix parameters is effectively described in terms of the latent variable models. The TSM provides various sources of information such as the correlation information, the prior distribution, and the prior knowledge of the regression parameters that are very useful for rapid adaptation. The quasi-Bayes (QB) estimation algorithm is formulated to incrementally update the hyperparameters of the TSM and regression matrices simultaneously. Experimental results showed that the proposed TSM approach is better than that of the conventional quasi-Bayes linear regression (QBLR) algorithm for a small amount of adaptation data.

  • PDF

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

UTLIZIATION OF RADARSAT FOR FORECASTING OIL SLICKT RAJECTORY MOVEMENT

  • Marghany, Maged
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.435-437
    • /
    • 2003
  • This study presents work to utilize RADARSAT SAR image for forecast oil slick trajectory movement. The fractal dimension algorithm used to detect oil slick. The Doppler frequency shift and quasi-linear model was used to simulate a current pattern from RADARSAT image. The Fay’s algorithm of oil slick spreading was developed based on a Doppler frequency shift model. Thus, the study shows that fractal dimension algorithm discriminated the oil slick from the surrounding water features. The quasi-linear model shows that the current pattern can be simulated from single RADARSAT image. The oil slick trajectory model shows that after 48 hrs, the oil slick parcels deposited along the coastal waters.

  • PDF

Monotone Local Linear Quasi-Likelihood Response Curve Estimates

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.273-283
    • /
    • 2006
  • In bioassay, the response curve is usually assumed monotone increasing, but its exact form is unknown, so it is very difficult to select the proper functional form for the parametric model. Therefore, we should probably use the nonparametric regression model rather than the parametric model unless we have at least the partial information about the true response curve. However, it is well known that the nonparametric regression estimate is not necessarily monotone. Therefore the monotonizing transformation technique is of course required. In this paper, we compare the finite sample properties of the monotone transformation methods which can be applied to the local linear quasi-likelihood response curve estimate.

Analysis of Quasi-Likelihood Models using SAS/IML

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.247-260
    • /
    • 1997
  • The quasi-likelihood models which greatly widened the scope of generalized linear models are widely used in data analysis where a likelihood is not available. Since a quasi-likelihood may not appear to be an ordinary likelihood for any known distribution in the natural exponential family, to fit the quasi-likelihood models the standard statistical packages such as GLIM, GENSTAT, S-PLUS and so on may not directly applied. SAS/IML is very useful for fitting of such models. In this paper, we present simple SAS/IML(version 6.11) program which helps to fit and analyze the quasi-likelihood models applied to the leaf-blotch data introduced by Wedderburn(1974), and the problem with deviance useful generally to model checking is pointed out, and then its solution method is mention through the data analysis based on this quasi-likelihood models checking.

  • PDF

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Empirical Bayes Estimate for Mixed Model with Time Effect

  • Kim, Yong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.515-520
    • /
    • 2002
  • In general, we use the hierarchical Poisson-gamma model for the Poisson data in generalized linear model. Time effect will be emphasized for the analysis of the observed data to be collected annually for the time period. An extended model with time effect for estimating the effect is proposed. In particularly, we discuss the Quasi likelihood function which is used to numerical approximation for the likelihood function of the parameter.