• 제목/요약/키워드: quasi-chain module p

검색결과 2건 처리시간 0.016초

ORDER-CONGRUENCES ON S-POSETS

  • XIE XIANG-YUN;SHI XIAOPING
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.1-14
    • /
    • 2005
  • The aim of this paper is to study order-congruences on a S-poset A and to characterize the order-congruences by the concepts of pseudooreders on A and quasi-chains module a congruence p. Some homomorphism theorems of S-posets are given which is similar to the one of ordered semigroups. Finally, It is shown that there exists the non-trivial order-congruence on a S-poset by an example.

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.