• Title/Summary/Keyword: quasi-3D theory

Search Result 96, Processing Time 0.025 seconds

Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • In this article the frequency response of magneto-flexo-electric rotary porous (MFERP) nanobeams subjected to thermal loads has been investigated through nonlocal strain gradient elasticity theory. A quasi-3D beam model beam theory is used for the expositions of the displacement components. With the aid of Hamilton's principle, the governing equations of MFERP nanobeams are obtained. Further, administrating an analytical solution the frequency problem of MFERP nanobeams are solved. In addition the numerical examples are also provided to evaluate the effect of nonlocal strain gradient parameter, hygro thermo environment, flexoelectric effect, in-plane magnet field, volume fraction of porosity and angular velocity on the dimensionless eigen frequency.

Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.717-728
    • /
    • 2023
  • The effect of temperature dependent material properties on the free vibration of FG porous beams is investigated in the present paper. A quasi-3D shear deformation solution is used involves only three unknown function. The mechanical properties which are considered to be temperature-dependent as well as the porosity distributions are assumed to gradually change along the thickness direction according to defined law. The beam is supposed to be simply supported and lying on variable elastic foundation. The differential equation system governing the free vibration behavior of porous beams is derived based on the Hamilton principle. Navier's method for simply supported systems is then used to determine and compute the frequencies of FG porous beam. The results of the present formulation are validated by comparing with those available literatures. Finally, the effects of several parameters such as porosity distribution and the parameters of variable elastic foundation on the free vibration behavior of temperature-dependent FG beams are presented and discussed in detail.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Failure Prediction for Composite Materials under Flexural Loading (굽힘 하중에 의한 복합재료 파손 예측 연구)

  • Kim, Jin-Sung;Roh, Jin-Ho;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1013-1020
    • /
    • 2017
  • In this study, the failure prediction of composite laminates under flexural loading is investigated. A FEA(finite element analysis) using 2D strain-based interactive failure theory. A pregressive failure analysis was applied to FEA for stiffness degradation with failure mode each layer. A three-point bending test based on the ASTM D790 are performed for cross-ply $[0/90]_8$ and quasi-isotropic $[0/{\pm}45/90]_{2s}$ laminated composites. The accuracy of the applied failure theory is verified with the experimental results and other failure criteria such as maximum strain, maximum stress and Tsai-Wu theories.

Cutout shape and size effects on response of quasi-isotropic composite laminate under uni-axial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.335-348
    • /
    • 2010
  • Cutouts are often provided in structural and aircraft components for ventilation, for access, inspection, electric lines and fuel lines or sometimes to lighten the structure. This paper addresses the effects of cutout shape (i.e., circular, square, diamond, elliptical-vertical and elliptical-horizontal) and size on buckling and postbuckling response of quasi-isotropic (i.e., $(+45/-45/0/90)_{2s}$) composite laminate under uni-axial compression. The finite element method is used to carry out the investigation. The formulation is based on first order shear deformation theory and von Karman's assumptions are used to incorporate geometric nonlinearity. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. It is observed that for the smaller size cutout area there is no significant effect of cutout shape on load-deflection response of the laminate. It is also concluded that the cutout size has substantial influence on the buckling and postbuckling response of the laminate with elliptical-horizontal cutout, while this effect is observed to be the least in case of laminate with elliptical-vertical cutout.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

A Study on the Dynamic Characteristics of Tungsten Alloy using Explicit FEM (익스플리시트 유한요소법을 이용한 텅스텐합금의 동적특성에 관한 연구)

  • Hwang D. S.;Rho B. L.;Hong D. H.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.55-61
    • /
    • 2000
  • Tungsten heavy metal is characterized bi a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as for defense purposes(kinetic energy penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

  • PDF