• Title/Summary/Keyword: quasars: general

Search Result 21, Processing Time 0.022 seconds

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

COSMOLOGICAL APPLICATIONS OF MULTIPLE-IMAGE GRAVITATIONALLY LENSED QUASARS (다상 준항성 중력렌즈의 우주론적 응용)

  • Park, Myeong-Gu
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Quasars at cosmological distances can be gravitationally lensed by galaxies into two or more images. The probability of this lensing and the angular separation between the images depend on the geometry and the expansion history of the universe as well as the lensing galaxies. The time delay between lensed images is also a direct indicator of the size of the universe. I review these cosmological applications of multiple-image gravitationally lensed quasars to determine or constrain the cosmological parameters.

NEWLY DISCOVERED z ~ 5 QUASARS BASED ON DEEP LEARNING AND BAYESIAN INFORMATION CRITERION

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Jiang, Linhua
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.4
    • /
    • pp.131-138
    • /
    • 2022
  • We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.

THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN

  • JEON, YISEUL;IM, MYUNGSHIN;PAK, SOOJONG;HYUN, MINHEE;KIM, SANGHYUK;KIM, YONGJUNG;LEE, HYE-IN;PARK, WOOJIN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.25-35
    • /
    • 2016
  • Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.

QUADRUPLY-IMAGED QUASARS: SOME GENERAL FEATURES

  • Tuan-Anh, P.;Thai, T.T.;Tuan, N.A.;Darriulat, P.;Diep, P.N.;Hoai, D.T.;Ngoc, N.B.;Nhung, P.T.;Phuong, N.T.
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.149-159
    • /
    • 2020
  • Gravitational lensing of point sources located inside the lens caustic is known to produce four images in a configuration closely related to the source position. We study this relation in the particular case of a sample of quadruply-imaged quasars observed by the Hubble Space Telescope. Strong correlations between the parameters defining the image configuration are revealed. The relation between the image configuration and the source position is studied. Some simple features of the selected data sample are exposed and commented upon. In particular, evidence is found for the selected sample to be biased in favor of large magnification systems. While having no direct impact on practical analyses of specific systems, our results have pedagogical value and deepen our understanding of the mechanism of gravitational lensing.

General Relativity and Light Bending/Gravitational Lensing (일반상대성이론과 빛의 꺾임/중력렌즈)

  • Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.57.4-57.4
    • /
    • 2015
  • Light bending by gravity was the key prediction of general relativity. Solar eclipse expedition of 1919 provided the observational support for the theory of general relativity. Diverse gravitational lensing, i.e., light bending, phenomena have been speculated and predicted by general relativity and ultimately discovered many years later. Gravitationally lensed quasars, luminous arcs, weak lensing, and microlensing have provided invaluable information about the distribution of matter, especially of dark matter, and the cosmology. Gravitational lensing is one of the most spectacular manifestation of general relativity and will remain as an extremely useful astrophysical tools in the future.

  • PDF

FOCAL REDUCER FOR CQUEAN (Camera for QUasars in EArly uNiverse)

  • Lim, Juhee;Chang, Seunghyuk;Pak, Soojong;Kim, Youngju;Park, Won-Kee;Im, Myungshin
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.4
    • /
    • pp.161-172
    • /
    • 2013
  • A focal reducer is developed for CQUEAN (Camera for QUasars in EArly uNiverse), which is a CCD imaging system on the 2.1 m Otto Struve telescope at the McDonald observatory. It allows CQUEAN to secure a wider field of view by reducing the effective focal length by a factor of three. The optical point spread function without seeing effects is designed to be within one pixel ($0.283^{\prime\prime}$) over the field of view of $4.82^{\prime}{\times}4.82^{\prime}$ in optimum wavelength ranges of 0.8-1.1 ${\mu}m$. In this paper, we describe and discuss the characteristics of optical design, the lens and barrel fabrications and the alignment processes. The observation results show that the image quality of the focal reducer confirms the expectations from the design.

A Y-BAND LOOK OF THE SKY WITH 1-M CLASS TELESCOPES

  • Choi, Chang-Su;Im, Myung-Shin;Jeon, Yi-Seul;Ibrahimov, Mansur
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.7-17
    • /
    • 2012
  • Y-band is a broad passband that is centered at ~1 ${\mu}m$. It is becoming a new, popular window for extragalactic study especially for observations of red objects thanks to recent CCD technology developments. In order to better understand the general characteristics of objects in Y-band, and to investigate the promise of Y-band observations with small telescopes, we carried out imaging observations of several extragalactic fields, brown dwarfs, and high redshift quasars with Y-band filter at the Mt. Lemmon Optical Astronomy Observatory and the Maidanak observatory. From our observations, we constrain the bright end of the galaxy and the stellar number counts in Y-band. We also test the usefulness of high redshift quasar (z >6) selection via i - z - Y color-color diagram, to demonstrate that the i - z - Y color-color diagram is effective for the selection of high redshift quasars even with a conventional optical CCD camera installed at a 1-m class telescope.

LARGE SDSS QUASAR GROUPS AND THEIR STATISTICAL SIGNIFICANCE

  • Park, Changbom;Song, Hyunmi;Einasto, Maret;Lietzen, Heidi;Heinamaki, Pekka
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • We use a volume-limited sample of quasars in the Sloan Digital Sky Survey (SDSS) DR7 quasar catalog to identify quasar groups and address their statistical significance. This quasar sample has a uniform selection function on the sky and nearly a maximum possible contiguous volume that can be drawn from the DR7 catalog. Quasar groups are identified by using the Friend-of-Friend algorithm with a set of fixed comoving linking lengths. We find that the richness distribution of the richest 100 quasar groups or the size distribution of the largest 100 groups are statistically equivalent with those of randomly-distributed points with the same number density and sky coverage when groups are identified with the linking length of $70h^{-1}Mpc$. It is shown that the large-scale structures like the huge Large Quasar Group (U1.27) reported by Clowes et al. (2013) can be found with high probability even if quasars have no physical clustering, and does not challenge the initially homogeneous cosmological models. Our results are statistically more reliable than those of Nadathur (2013), where the test was made only for the largest quasar group. It is shown that the linking length should be smaller than $50h^{-1}Mpc$ in order for the quasar groups identified in the DR7 catalog not to be dominated by associations of quasars grouped by chance. We present 20 richest quasar groups identified with the linking length of $70h^{-1}Mpc$ for further analyses.

Performance of CQUEAN camera

  • Choi, Chang-Su;Park, Won-Kee;Jeon, Yi-Seul;Pak, Soo-Jong;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • CQUEAN (Camera for QUasars in EArly uNiverse) is a newly developed camera system by CEOU optimized at 0.8 - $1.1{\mu}m$ wavelength region. From Aug. 10 to Aug. 17, 2010, the camera was installed at 2.1m Otto Struve telescope at McDonald Observatory, USA, and engineering test observation was performed. We obtained the data for the characteristics of camera and scientific purpose using 7 filters (g, r, i, z, Is, Iz, Y). For the purpose of discovery of z - 5~6 quasar, we specially used new filters (Is,Iz). During the test observation, we obtained the data of Gamma-Ray Burst, high redshift quasars, high redshift quasar candidates and other calibration data. We present general characteristics of the reduced data taken with CQUEAN and show the performance of the camera.

  • PDF