• 제목/요약/키워드: quartz tube

검색결과 104건 처리시간 0.029초

녹색발광 Zn2SiO4:Mn2+ 형광체가 코팅된 엑시머 램프의 제작 및 특성 (Fabrication and Property of Excimer Lamp Coated with Green-emitting Zn2SiO4:Mn2+ Phosphor Film)

  • 강부식;정현지;정용석;손세모;김종수
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.106-109
    • /
    • 2022
  • The green-emitting Zn2SiO4:Mn2+ phosphor film was evaluated in a xenon excimer lamp. The phosphor film with 2 ㎛ thick was formed of monolithic structure on the inner side of quartz through a long-time annealing process of coated ZnO solution doped with Mn2+ ion and SiO2 of quartz tube. The coated quartz was filled with 100 torr of xenon gas, and simultaneously both sides was melt and sealed. The xenon-field quartz tube was discharge by applying the voltage of 15 kV with a frequency of 26 kHz, and emitted the glow with dominant peak at 172 nm. The vacuum ultraviolet excited the inner-side coated Zn2SiO4:Mn2+ phosphor film, which emitted the pure and strong green light.

마이크로웨이브 열분해(熱分解)를 이용(利用)한 폐(廢) 폴리스티렌과 모터 오일 혼합물(混合物)로부터 고분자(高分子) 원료(原料) 물질(物質) 회수(回收)에 관한 연구(硏究) (Study on Recovery of Polymeric Raw Materials from WastePolystyrene in Motor Oil using Microwave Thermal Decomposition)

  • 강태원
    • 자원리싸이클링
    • /
    • 제15권5호
    • /
    • pp.11-16
    • /
    • 2006
  • 폐 폴리스티렌과 모터 오일의 혼합물로부터 마이크로웨이브 열분해를 이용하여 유용한 고분자 원료물질의 회수를 위한 연구를 수행하였다. 마이크로웨이브 반응기로 quartz tube를 사용하였으며 마이크로웨이브 흡수체로 실리콘 카바이드를 사용하였다. 공정 변수로 마이크로웨이브 입력 파워를 180에서 250 W까지 변화시켰으며, 마이크로웨이브 조사시간을 30분에서 1시간까지 변화시키며 실험하였다. 열분해를 통하여 얻어진 생성물을 GC/MS를 사용하여 분석한 결과 스티렌, 메틸 스티렌, 톨루엔, 그리고 에틸벤젠이 4개의 주요 회수 성분이었으며, 이 중 폴리스티렌으로부터 스티렌의 회수율은 약 50% 이었다. 열분해에 마이크로웨이브를 사용함으로써 일반 열분해 보다 훨씬 낮은 온도에서 열분해가 이루어졌다.

Effect of ON/OFF Cycles of Ar Gas on Structural and Optical Properties of ZnO Nanostructure Grown by Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Cho, Min-Young;Kim, So-A-Ram;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.415-415
    • /
    • 2012
  • ZnO nanostructures were synthesized by a vapor phase transport process in a single-zone furnace within a horizontal quartz tube with an inner diameter of 38 mm and a length of 485 mm. The ZnO nanostructures were grown on Au-catalyzed Si(100) substrates by using a mixture of zinc oxide and graphite powders. The growth of ZnO nanostructures was conducted at $800^{\circ}C$ for 30 min. High-purity Ar and $O_2$ gases were pushed through the quartz tube during the process at a flow rate of 100 and 10 sccm, respectively. The sequence of ON/OFF cycles of the Ar gas flow was repeated, while the $O_2$ flow is kept constant during the growth time. The Ar gas flow was ON for 1 min/cycle and that was OFF for 2 min/cycle. The structure and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscope, X-ray diffraction, temperature-dependent photoluminescence. The preferred orientation of the ZnO nanostructures was along c-axis with hexagonal wurtzite structure.

  • PDF

유체 시뮬레이션을 이용한 선형 마이크로웨이브 플라즈마의 특성 분석 (Characterization of Linear Microwave Plasma using the Fluid Simulation)

  • 서권상;한문기;김동현;이호준
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.567-572
    • /
    • 2015
  • Discharge characteristics of linear microwave plasma were investigated by using fluid simulation of 2D axis-symmetry based on finite elements method. The microwave power was 2.45 GHz TEM mode and transmitted through linear antenna. Resistive power and pressure were considered simulation variables and argon was used for working gas. A decrease of electron density along the quartz tube was observed in low power condition but relatively uniform plasmas were generated in chamber by increasing the resistive power. The electron temperature was highly detected near the surface of quartz tube because the electron was heated only dielectric surface. The power transmission efficiency decreased and characteristics of surface plasma were observed in high electron density condition.

단일벽 탄소나노튜브의 수평배향도 및 밀도 향상 합성 (Synthesis of Single-Walled Carbon Nanotubes for Enhancement of Horizontal-Alignment and Density)

  • 곽은혜;임호빈;정구환
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.347-353
    • /
    • 2014
  • We present a synthesis of single-walled carbon nanotubes(SWNTs) for enhancement of parallel-alignment and density using chemical vapor deposition with methane feed gas. As-purchased ST-cut quartz substrates were heat-treated and line-patterned by electron-beam lithography in order to grow SWNTs with parallel alignment. We investigated the effects of various synthesis parameters such as catalyst oxidation, reduction, and synthesis conditions in order to enhance both tube density and degree of parallel alignment. The condition of $1{\AA}$ of Fe catalyst film, atmospheric oxidation at $750^{\circ}C$ for 10 min, reduction under 400 Torr for 5 min, and growth at $865^{\circ}C$ under 300 Torr yields $33tubes/10{\mu}m$, which is the highest tube density with parallel alignment. Based on the results of atomic force microscope and Raman spectroscopy, it was found that SWNTs have diameter range of 0.8-2.0 nm. We believe that the present work would contribute to the development of SWNTs-based flexible functional devices.

고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화 (Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor)

  • 김도헌;신봉기;손민;구자예;강문중;장홍빈
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

RF 헬리콘 플라즈마를 이용한 회학기상 증착기의 제작 (Construction of CVD by using RF Helicon Plasma)

  • 신재균;현준원;박상규
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.607-612
    • /
    • 1998
  • RF HPCVD(Helicon Plasma Chemical Vapor Deposition) has been successfully constructed for diamond thin films. The system consists of plasma generation tube, deposition chamber, pumping lines for gas system. A mixture of $CH_4 and H_2$is used for reaction. Two thermocouples, a quartz tube surrounded by a RF antenna and a magnet, and a high temperature heater were set up in the deposition chamber. The process for the thin film diamond deposition has been carried put in a high vacuum system at a substrate temperature of $800^{\circ}C$, and pressure of 5 mtorr. It is also demonstrated. that the RF HPCVD system has advantages for controlling deposition parameters easily.

  • PDF

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

Development and Performance Testing of a Time-resolved OSL Measurement System

  • Hong, Duk-Geun;Kim, Myung-Jin
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.69-76
    • /
    • 2017
  • Background: Time-resolved optically stimulated luminescence (TR-OSL) is a very useful method for calculating the lifetimes of crystalline quartz and feldspar. Materials and Methods: A compact TR-OSL system was developed, comprising a heater assembly manufactured using Kanthal wire, 2 powerful blue light-emitting diodes (LED, LXHL-PB02) for optical stimulation equipped with VIS liquid light guides, and a photomultiplier tube combined with an optical filter for luminescence detection. A pulse generated from the data acquisition board (NI PCI 6250) was used to initiate on/off signals in LED and TR-OSL measurements. Results and Discussion: The TR-OSL and background signals measured using this TR-OSL system using quartz samples were very similar to those reported in a previous study. Additionally, the lifetimes of the build-up and TR-OSL signals were calculated as $27.4{\pm}2.2{\mu}s$ and $30.3{\pm}0.6{\mu}s$, respectively, in good agreement with the findings of a previous study. Conclusion: It was concluded that the developed TR-OSL system was very reliable for TR-OSL signal measurements and lifetime calculations.

Role of Metal Catalyst and Substrate Site for the Growth of Carbon Nanomaterials

  • Manocha, L.M.;Valand, Jignesh;Manocha, S.
    • Carbon letters
    • /
    • 제6권2호
    • /
    • pp.79-85
    • /
    • 2005
  • The work reported in this paper relates to preparation and characterization of carbon nanomaterials by CVD method on different substrates by decomposition of certain hydrocarbons at 550-$800^{\circ}C$ using a horizontal quartz tube reactor. Monometallic and bimetallic catalyst system of iron and nickel were used for the preparation of different carbon nanomaterials. The influence of various parameters such as substrate/catalyst preparation parameters, the nature of substrate, catalyst concentration, reaction time and temperature on the growth, yield and alignment of carbon nanotubes has been studied. The characterization of carbon nanomaterials has been carried out using SEM, TEM and TGA. The carbon nanomaterials developed were vertically aligned on a large area of flat quartz substrate.

  • PDF