• Title/Summary/Keyword: quarter car

Search Result 69, Processing Time 0.03 seconds

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

Control of Active Suspension System Using $H_{inf}$ And Adaptive Robust Control ($H_{inf}$와 로버스트 적응 제어기를 이용한 능동 현가 시스템의 제어)

  • Bui, Trong Hieu;Nguyen, Tan Tien;Park, Soon-Sil;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.694-699
    • /
    • 2001
  • This paper presents a control of active suspension system for quarter-car model with two-degree-of-freedom using $H_{inf}$ and nonlinear adaptive robust control method. Suspension dynamics is linear and treated by $H_{inf}$ method which guarantees the robustness of closed loop system under the presence of uncertainties and minimizes the effect of road disturbance to system. An Adaptive Robust Control (ARC) technique is used to design a force controller such that it is robust against actuator uncertainties. Simulation results are given for both frequency and time domains to verify the effectiveness of the designed controllers.

  • PDF

LQR Controller Design for Active Suspensions using Evolution Strategy and Neural Network

  • Cheon, Jong-Min;Park, Young-Kiu;Kim, Sungshin;Kim, Dae-Jun;Lee, Min-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.4-41
    • /
    • 2001
  • In this paper, we propose a LQR(Linear Quadratic Regulator) controller design for the active suspension using two-degree-of-freedom quarter-car model. We can improve the inherent suspension problem, the tradeoff between ride quality and suspension travel by selecting appropriate weights in the LQR-objective function. Because any definite rules for selecting weights do not exist, we replace the designer´s trial and error with the optimization-algorithm, ES(Evolution Strategy). Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle´s state variables.

  • PDF

Composite Control of Active Suspension System (차량 능동 현가장치의 성능 향상을 위한 복합제어기 설게)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.74-81
    • /
    • 1995
  • In this paper, a composite controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The LQG/LTR controller is used to achieve a design transfer toop. A bandpass feedback controller is adopted to eliminate the response due to the disturbance, which generally can not be measured, confined within an interested frequence range. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the composite control system is compared with that of an LQG/LTR control system.

  • PDF

A Study on ER Suspension System with Energy Generation (재생 에너지를 특징으로하는 ER현가장치 연구)

  • 김기선;김승환
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.71-78
    • /
    • 1999
  • This paper presents a new type of energy generative ER suspension system which does not require external power sources. This is accomplished by converting vibration energy(kinetic energy) into electrical energy. In order to undertake this, an appropriate size of the ER damper is manufactured by incorporation a mechanism which changes the linear motion of the ER damper to the rotary motion. This rotary motion is amplified by gears and activates a generator to produce the electrical energy. The efficiency of energy generation is evaluated and the level of damping force with generated power is also investigated. Then, the ER suspension system is applied to the quarter car model, and its vibration isolation is experimentally evaluated with respect to the piston speed.

  • PDF

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

Study on the Control System Based on Results Measurement (업적기준 통제시스템에 관한 연구)

  • 정신작;손병기
    • The Journal of Fisheries Business Administration
    • /
    • v.28 no.1
    • /
    • pp.85-117
    • /
    • 1997
  • This paper is focused on management control system. From a management control perspective, strategies should be viewed as useful, but not absolutely necessary, guides to the proper design of an MCS. When strategies are formulated more clearly, more control alternatives become feasible and it becomes easier to implement each form of management control effectively. The common and important category of controls are action controls, personnel and cultural controls, and results controls. Action controls involves ensuring that employees perform(or do not perform) certain actions that are known to be beneficial(or harmful) to the organization. Personnel and cultural controls take steps to ensure that employees will control each others' behaviors. Results controls involve rewarding individuals(and sometimes groups of individuals) for generating good outcomes or punishing them for poor outcomes. The results controls of ROI-type measure cause to make managers excessively short- term oriented, or myopic. When managers' orientations to the short - term become excessive -when the management are more concerned with short-term profit than entity value-the managers are said to be myopic. We car, solve myopic problem by introducing AR(abnormal return), near-perfect indicators of value creation. The results - control ideal would be to hold all employees accountable for the wealth they individually create(or destroy) for the owners of the entities in which they work. This ideal is approachable for top management of publicly traded corporations because for these organizations, the wealth created(returns to shareholders) can be measured directly for any period(such as a year, a quarter, or a month) as the measurement period pin(or minus) the change in the market value of the stock.

  • PDF

Modified Sensitivity Control of a Semi-Active Suspension System with MR-Damper for Ride Comfort Improvement (MR 댐퍼 반능동 현가시스템의 승차감향상을 위한 수정된 민감도제어)

  • Kim, Tae-Shik;Kim, Rae-Kwan;Park, Jae-Woo;Huh, Chang-Do;Hong, Keum-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.129-138
    • /
    • 2007
  • In this paper, a modified sensitivity control for the semi-active suspension system with a magneto-rheological (MR) damper is investigated. A 2-d.o.f quarter-car model together with a 6th order polynomial model for the MR damper is considered. For the purpose of suppressing the vertical acceleration of the sprung mass, the square of the vertical acceleration is defined as a cost function and a modified sensitivity control that updates the current input in the negative gradient of the cost function is proposed. The implementation of the proposed algorithm requires only the measurement of the relative displacement of the suspension deflection. The local stability of equilibria of the closed loop nonlinear system is proved by investigating the eigenvalues of the linearized ones. Through simulations, the passive suspension, the skyhook control, and the proposed modified sensitivity control are compared.

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.