• Title/Summary/Keyword: quantum transmission

Search Result 157, Processing Time 0.032 seconds

Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization

  • Xu, Jiakun;Ju, Caixia;Sheng, Jun;Wang, Fang;Zhang, Quan;Sun, Guolong;Sun, Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2408-2412
    • /
    • 2013
  • We demonstrate herein the synthesis and modification of magnetic nanoparticles and its use in the immobilization of the lipase. Magnetic $Fe_3O_4$ nanoparticles (MNPs) were prepared by simple co-precipitation method in aqueous medium and then subsequently modified with tetraethyl orthosilicate (TEOS) and 3-aminopropyl triethylenesilane (APTES). Silanization magnetic nanoparticles (SMNP) and amino magnetic nanomicrosphere (AMNP) were synthesized successfully. The morphology, structure, magnetic property and chemical composition of the synthetic MNP and its derivatives were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analyses (TGA). All of these three nanoparticles exhibited good crystallization performance, apparent superparamagnetism, and the saturation magnetization of MNP, SMNP, AMNP were 47.9 emu/g, 33.0 emu/g and 19.5 emu/g, respectively. The amino content was 5.66%. The AMNP was used to immobilize lipase, and the maximum adsorption capacity of the protein was 26.3 mg/g. The maximum maintained activity (88 percent) was achieved while the amount of immobilized lipase was 23.7 mg $g^{-1}$. Immobilization of enzyme on the magnetic nanoparticles can facilitate the isolation of reaction products from reaction mixture and thus lowers the cost of enzyme application.

Modulation of electrical properties of GaN nanowires (GaN 나노선의 전기적 특성제어)

  • Lee, Jae-Woong;Ham, Moon-Ho;Myoung, Jae-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.11-11
    • /
    • 2007
  • 1차원 구조체인 반도체 나노선은 앙자제한효과 (quantum confinement effect) 등을 이용하여 고밀도/고효율의 소자 개발이 기대되고 있다. GaN는 상온에서 3.4 eV의 밴드갭 에너지를 갖는 III-V 족 반도체 재료로써 박막의 경우 광전자 소자로 폭넓게 응용되고 있다. 최근 GaN 나노선의 합성에 성공하면서 발광소자, 고효율의 태양전지, HEMT 등으로의 응용을 위한 많은 연구가 활발히 이루어지고 있다. 하지만, 아직까지 GaN 나노선의 전기적 특성을 제어하는 기술은 확립되지 않고 있다. 본 연구에서는 Vapor solid (VS)법을 이용하여 GaN 나노선을 합성하였으며, GaN 분말과 함께 $Mg_2N_3$ 분말을 첨가하여 (Ga,Mg)N 나노선을 성공적으로 합성하였다. 합성시에 GaN와 Mg 소스간의 거리 변화를 통해 Mg 도핑농도를 제어하고자 하였다. 이 같은 방법으로 합 된 (Ga,Mg)N 나노선의 Mg 도핑농도에 따른 결정학적 특성을 알아보고, (Ga,Mg)N 나노선을 이용하여 소자를 제작한 후 그 전기적 특성을 살펴보고자 한다. X-ray diffraction (XRD)과 high-resolution transmission electron microscopy (HRTEM), EDX를 이용하여 합성된 나노선의 결정학적 특성과 Mg의 도핑 농도를 확인하였다. Photo lithography와 e-beam lithography법을 이용하여 (Ga,Mg)N 나노선 field-effect transistor (FET)를 제작하고, channel current-drain voltage ($I_{ds}-V_{ds}$) 와 channel current-gate voltage ($I_{ds}-V_g$) 측정을 통해 (Ga,Mg)N 나노선이 도핑 농도에 따라 n형에서 p형으로 전기적 특성이 변화함을 확인하였다.

  • PDF

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.

수직방향으로 적층된 InAs 양자점의 광학적 특성

  • 김광무;노정현;박영민;박용주;나종범;김은규;방정호
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.93-93
    • /
    • 1999
  • 양자점(Quantum dot : QD)를 이용한 소자를 만들기 위해서는 수직방향으로의 적층이 필수적이다. 양자점의 적층은 수직적으로 같은 위치에 정렬하므로, 고려되어야 할 요소로는 양자점간의 파동함수의 중첩(coupling)에 의한 특성변화, 적층의 진행에 따른 변형(strain)의 증가로 기인되는 volcano 모양으로 나타나는 결함등이 있다. 이러한 결함은 nonradiative recombination center로 작용하여 오히려 효율이 떨어지게 되는 현상이 발생하게 되므로 본 연구에서는 적층횟수에 따른 발광효율의 변화를 조사하여 소자응용에 적절한 적층 조건을 조사하였다. 시료성장은 molecular beam epitaxy (MBE) 장치를 이용하여 GAs(100) 기판위에 GaAs buffer를 58$0^{\circ}C$에서 150nm 성장후 InAs/GaAs 양자점과 50$0^{\circ}C$에서 적층회수 1, 3, 6, 10, 15, 20회로 하였으며 적층성장 이후 GaAs cap layer를 성장하였다. GaAs spacing과 cap layer의 성장온도 역시 50$0^{\circ}C$이며 시료의 분석은 photoluminescence (PL)과 scanning transmission electron microscope (STEM)으로 하였다. 적층횟수를 바꾸어 시료를 성장하기 전에 적층횟수를 10회로 고정하고 spacing 두께를 2.8nm, 5.6nm, 11.2nm로 바꾸어 성장하여 PL 특성을 관찰하여본 결과 spacing이 2.8nm인 경우 수직적으로 정렬된 양자점 간에 coupling이 매우 커서 single layer QD의 PL peak에 비해 약 100nm 정도 파장이 증가하였고, spacing의 두께가 11.2nm 일 경우는 single layer QD와 거의 같은 파장의 빛을 방출하여 중첩이 거의 일어나지 않지만 두꺼운 spacing때문에 PL세기가 감소하였다. 한편, 적층회수에 따른 광학적 특성을 PL로 조사하여 본 결과 peak 파장은 적층횟수가 1회에서 3회로 증가했을 때는 blue shift 하다가 이후 적층이 증가함에 따라 red shift 하였다. 그리고 10층 이상의 적층에서는 excited state에서 기인된 peak이 검출되었다. 이렇나 원인은 적층수가 증가함에 따라 carrier life time이 증가하여 exciter state에 carrier가 존재할 확률이 증가하기 때문으로 생각된다. 또한 PL 세기가 다소 증가하다가 10층 이상의 경우는 다시 감소함을 알 수 있었다. 반치폭도 3층과 6층에서 가장 적은 값을 보였다. 이와 같은 결과는 결함생성과 관련하여 STEM 분석으로 해석되어질 수 있는데 6층 적층시는 양자점이 수직적으로 정렬되어 잘 형성됨을 관찰할 수 있었고 적층에 따른 크기 변화도 거의 나타나지 않았다. 그러나 10층 15층 적층시 몇가지 결함이 형성됨을 볼수 있었고 양자점의 정렬도 완전하게 이루어지지 않음을 볼 수 있었다. 그러므로 수직적층된 InAs 양자점의 광학적 특성은 성장조건에 따른 결함생성과 밀접한 관련이 있으며 상세한 논의가 이루어질 것이다.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

The characteristics of the passively Q-switched Nd:YAG laser output energy with the initial absorbing effect of Cr4+:YAG absorber (수동 큐스위칭 Nd:YAG 레이저에서 포화흡수체 Cr4+:YAG의 초기 광흡수 효과와 출력 특성)

  • Choi, Young-Soo;Yoon, Joo-Hong;Kim, Ki-Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.340-346
    • /
    • 2002
  • To understand the characteristics of the passively Q-switched Nd:YAG laser output energy with $Cr^{4+}$:YAG saturable absorbers, the transmissions of $Cr^{4+}$:YAG and the inversion population densities of Nd:YAG at the onset of Q-switch were experimentally analysed. The measured transmissions at the onset of Q-switch were 0.70$\pm$0.02 and 0.62$\pm$0.02 for the 0.48 and 0.38 of initial transmission, respectively. It means that the initial transmission loss of $Cr^{4+}$:YAG absorber is reduced in a low Q-state due to the initial absorbing effect of $Cr^{4+}$:YAG. In pumping stage, $Cr^{4+}$:YAG has absorbing processes due to the fluorescence and amplified spontaneous emissions of the Nd:YAG even if there is no laser oscillation. The minimum population inversion densities for Qswitch were approximately 3.7${\times}{10^{17}}$ and 4.0${\times}{10^{17}}$ $cm^{-3}$, respectively. At the beginning of Q-switch, the number density of $Cr^{4+}$ions in the ground state of $Cr^{4+}$:YAG was approximately 1.4${\times}{10^{17}}$ $cm^{-3}$ and the ratio of the ground to the excited state of absorbing $Cr^{4+}$ions was 0.44 both. The modified theoretical output energies with the initial absorbing effect were 18 and 18.5 mJ. The measured output energies were 17$\pm$1 and 18$\pm$1.5 mJ, respectively. The quantum extraction efficiencies of Q-switch were 0.32 both. The theoretical Q-switched output results with the initial absorbing effect of the saturable absorber are a good agreement with the experimental results.