Browse > Article
http://dx.doi.org/10.3807/KJOP.2002.13.4.340

The characteristics of the passively Q-switched Nd:YAG laser output energy with the initial absorbing effect of Cr4+:YAG absorber  

Choi, Young-Soo (Agency for Defense Development)
Yoon, Joo-Hong (Agency for Defense Development)
Kim, Ki-Hong (Agency for Defense Development)
Publication Information
Korean Journal of Optics and Photonics / v.13, no.4, 2002 , pp. 340-346 More about this Journal
Abstract
To understand the characteristics of the passively Q-switched Nd:YAG laser output energy with $Cr^{4+}$:YAG saturable absorbers, the transmissions of $Cr^{4+}$:YAG and the inversion population densities of Nd:YAG at the onset of Q-switch were experimentally analysed. The measured transmissions at the onset of Q-switch were 0.70$\pm$0.02 and 0.62$\pm$0.02 for the 0.48 and 0.38 of initial transmission, respectively. It means that the initial transmission loss of $Cr^{4+}$:YAG absorber is reduced in a low Q-state due to the initial absorbing effect of $Cr^{4+}$:YAG. In pumping stage, $Cr^{4+}$:YAG has absorbing processes due to the fluorescence and amplified spontaneous emissions of the Nd:YAG even if there is no laser oscillation. The minimum population inversion densities for Qswitch were approximately 3.7${\times}{10^{17}}$ and 4.0${\times}{10^{17}}$ $cm^{-3}$, respectively. At the beginning of Q-switch, the number density of $Cr^{4+}$ions in the ground state of $Cr^{4+}$:YAG was approximately 1.4${\times}{10^{17}}$ $cm^{-3}$ and the ratio of the ground to the excited state of absorbing $Cr^{4+}$ions was 0.44 both. The modified theoretical output energies with the initial absorbing effect were 18 and 18.5 mJ. The measured output energies were 17$\pm$1 and 18$\pm$1.5 mJ, respectively. The quantum extraction efficiencies of Q-switch were 0.32 both. The theoretical Q-switched output results with the initial absorbing effect of the saturable absorber are a good agreement with the experimental results.
Keywords
saturable absorber; $Cr^{4+}$:YAG; amplified spontaneous emission; population inversion density; initial absorbing effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Xie, Y. L. Lam, Y. C. Chan, S. C. Tam, J. Gu, F. Zhou, H. Yang, and G. Zhao, “Fluorescence fedback control of an active Q-switched diode-pumped Nd:YVO4 laser,” Appl. Opt., 39, pp. 978-981, 2000.   DOI   PUBMED
2 W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 103-110, Chap. 3.
3 O. Svelto, Principles of Lasers, 4th ed. (Plenum Press, New York, 1998), Chap. 8.
4 X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron., 35, pp. 1912-1918, 1999.   DOI   ScienceOn
5 John J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron., 31, pp. 1890-1901, 1995.   DOI   ScienceOn
6 Y. F. Chen, Y. P. Lan, and H. L. Chang, “Simu;taneous mode locking in a diode-pumped passively Q-switched Nd:YVO_4 laser with a GaAs saturable absorber,” IEEE J. Quantum Electron., 37, pp. 462-468, 2001.   DOI   ScienceOn
7 F. D. Patel and R. J. Bleach, “New formalism for the analysis of passively Q-switched laser systems,” IEEE J. Quantum Electron., 37, pp. 707-715, 2001.   DOI   ScienceOn
8 J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron., 35, pp. 1724-1730, 1999.   DOI   ScienceOn
9 정태문, 김광석, 문희종, 이종훈, 김철중, 이종민, "Cr4+:YAG 포화흡수체를 이용한 레이저 다이오드 뒷면 여기 Nd:YAG 레이저의 들뜸 효율 및 Q-swiching 특성 연구," 한국광학회지, 제9권, pp. 231-235, 1998.   과학기술학회마을
10 최영수, 전용근, 김재기, "포화흡수체 Cr4+:YAG와 유기염료 박막의 포화특성 분석," 한국광학회지, 제12권, pp. 98-102, 2001   과학기술학회마을
11 A. Agnesi, S. Dell'Acqua, C. Morello, G. Piccinno, G. C. Reali, and Z. Sun, “Diode-pumped Neodymium lasers repetitively Q-switched by Cr4+:YAG solid-state saturable absorbers,” IEEE J. Sel. Top. Quantum Electron., 3, pp. 45-52, 1997.   DOI   ScienceOn
12 Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron., 31, pp. 1738-1741, 1995.   DOI   ScienceOn
13 P. Yankov, “Cr4+:YAG Q-switching of Nd:host laser oscillators,” J. Phys. D: Appl. Phys., 27, pp. 1118-1120, 1994.   DOI   ScienceOn
14 Y. Shimony, Z. Burshtein, A. B. Baranga, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr^{4+}:YAG saturable absorbers,” IEEE J. Quantum Electron., 32, pp. 305-310, 1996.   DOI   ScienceOn
15 Y. Bai, N. Wu, J. Zhang, J. Li, S. Li, J. Xu, and P. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt., 36, pp. 2468-2472, 1997.   DOI   PUBMED
16 Y. Shimony, Y. Kalisky, and B. Chai, “Quantitative studies of Cr^{4+}:YAG as a saturable absorber for Nd:YAG laser,” Opt. Mater., 4, pp. 547-551, 1995.   DOI   ScienceOn
17 J. Dong, P. Deng, Y Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passive Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber,” Appl. Opt., 40, pp. 4303-4307, 2001.   DOI   PUBMED
18 Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO_4-Cr^{4+}:YAG laser,” IEEE J. Quantum Electron., 37, pp. 580-586, 2001.   DOI   ScienceOn
19 G. Xiao and M. Bass, “Additional experimental confirmation of the predictions of a model to optimize passively Qswitched lasers,” IEEE J. Quantum Electron., 34, pp. 1142-1143, 1998.   DOI   ScienceOn
20 G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron., 33, pp. 41-44, 1997.   DOI   ScienceOn
21 W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), Chap. 8.
22 Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, “Excited-state absorption studies of Cr^{4+} ions several garnet host crystals,” IEEE J. Quantum Electron., 34, pp. 292-299, 1998.   DOI   ScienceOn
23 G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of in yttrium aluminum garnet,” IEEE J. Quantum Electron., 35, pp. 1086-1091, 1999.   DOI   ScienceOn
24 X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Qswitched lasers,” IEEE J. Quantum Electron., 33, pp. 2286-2294, 1997.   DOI   ScienceOn
25 H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 mm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett., 61, pp. 2958-2960, 1992.   DOI
26 고해석, 전용근, "Cr^{4+}:YAG 결정과 유기염료 박막의 포화흡수 특성에 관한 연구," 새물리, 제39권, pp. 113-117, 1999.
27 Y. Kalisky, A. B. Barabga, Y. Shimony, Z. Burshtein, S. A. Pollack, and M. R. Kokta, “Cr^{4+} doped garnets: their properties as non-linear absorbers,” Opt. Mater., 6, pp. 275-280, 1996.   DOI   ScienceOn
28 Y. S. Choi, “Saturation characteristics of Cr4+:YAG crystals and dye films for passive Q-switches,” Appl. Opt. vol. 40, pp. 5417-5422, 2001.   DOI