• Title/Summary/Keyword: quantum noise

Search Result 141, Processing Time 0.027 seconds

Development of Contaminant Detection System using HTS SQUIDs

  • Ohtani, T.;Tanaka, S.;Narita, Y.;Ariyoshi, S.;Suzuki, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.38-42
    • /
    • 2015
  • In terms of food safety,mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products.

Synthesis of a Novel Near-Infrared Fluorescent Dye: Applications for Fluorescence Imaging in Living Cells and Animals

  • Chen, Tongbin;Lai, Yijun;Huang, Suisheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2937-2941
    • /
    • 2013
  • Fluorescence imaging is considered as one of the most powerful techniques for monitoring biomolecule activities in living systems. Near-infrared (NIR) light is advantageous for minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have developed a new NIR fluorescent dye, namely, RB-1, based on the Rhodamine B scaffold. RB-1 exhibits excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, and high photostability. In particular, RB-1 displays both absorption and emission in the NIR region of the "biological window" (650-900 nm) for imaging in biological samples. RB-1 shows absorption maximum at 614 nm (500-725 nm) and emission maximum at 712 nm (650-825 nm) in ethanol, which is superior to those of traditional rhodamine B in the selected spectral region. Furthermore, applications of RB-1 for fluorescence imaging in living cells and small animals were investigated using confocal fluorescence microscopy and in vivo imaging system with a high signal-to-noise ratio (SNR = 10.1).

Diffraction-Limited High-Power Single-Cycle Terahertz Pulse Generation in Prism-Cut LiNbO3 for Precise Terahertz Applications

  • Baek, In Hyung;Kang, Bong Joo;Jeong, Young Uk;Rotermund, Fabian
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.60-64
    • /
    • 2014
  • We report the generation of 3.3-mW single-cycle terahertz (THz) pulses at 1-kHz repetition rate via optical rectification in MgO-doped prism-cut stoichiometric LiNbO3. Efficient pulse-front tilting of 800-nm pulses was realized by an optimized single-lens focusing scheme for radially-symmetric propagation of THz beams. In this geometry, nearly-diffraction-limited THz Gaussian beams with electric field strength as high as 350 kV/cm were generated. The pump-to-THz energy conversion efficiency of $1.36{\times}10^{-3}$ and the extremely high signal-to-noise ratio of ~1:15000 achieved are among the best results for 1-kHz single-cycle terahertz pulse generation ever demonstrated in room temperature operation.

Digital Logic Extraction from QCA Designs (QCA 설계에서 디지털 논리 자동 추출)

  • Oh, Youn-Bo;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.107-116
    • /
    • 2009
  • Quantum-dot Cellular Automata (QCA) is one of the most promising next generation nanoelectronic devices which will inherit the throne of CMOS which is the domineering implementation technology for large scale low power digital systems. In late 1990s, the basic operations of the QCA cell were already demonstrated on a hardware implementation. Also, design tools and simulators were developed. Nevertheless, its design technology is not quite ready for ultra large scale designs. This paper proposes a new approach which enables the QCA designs to inherit the verification methodologies and tools of CMOS designs, as well. First, a set of disciplinary rules strictly restrict the cell arrangement not to deviate from the predefined structures but to guarantee the deterministic digital behaviors is proposed. After the gate and interconnect structures of. the QCA design are identified, the signal integrity requirements including the input path balancing of majority gates, and the prevention of the noise amplification are checked. And then the digital logic is extracted and stored in the OpenAccess common engineering database which provides a connection to a large pool of CMOS design verification tools. Towards validating the proposed approach, we designed a 2-bit adder, a bit-serial adder, and an ALU bit-slice. For each design, the digital logic is extracted, translated into the Verilog net list, and then simulated using a commercial software.

Analysis of Cis- Trans Photoisomerization Mechanism of Rhodopsin Based on the Tertiary Structure of Rhodopsin

  • Yamada, Atsushi;Yamato, Takahisa;Kakitani, Toshiaki;Yamamoto, Shigeyoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.51-54
    • /
    • 2002
  • We propose a novel mechanism (Twist Sharing Mechanism) for the cis-trans photoisomerization of rhodopsin, based on the molecular dynamics (MD) simulation study. New things devised in our simulations are (1) the adoption of Mt. Fuji potentials in the excited state for twisting of the three bonds C9=C10, C11=C12 and C13=14 which are modeled using the detailed ab initio quantum chemical calculations and (2) to use the rhodopsin structure which was resolved recently by the X-ray crystallographic study. As a result, we found the followings: Due to the intramolecular steric hindrance between 20-methyl and 10-H in the retinal chromophore, the C12-C13 and C10-C11 bonds are considerably twisted counterclockwise in rhodopsin, allowing only counterclockwise rotation of the C11 =C12 in the excited state. The movement of 19-methyl in rhodopsin is blocked by the surrounding three amino acids, Thr 118, Met 207 and Tyr 268, prohibiting the rotation of C9=C10. As a result only all-trans form of the chromophore is obtainable as a photoproduct. At the 90$^{\circ}$ twisting of C11=C12 in the course of photoisomerization, twisting energies of the other bonds amount to about 20 kcal/mol. If the transition state for the thermal isomerization is assumed to be similar to this structure, the activation energy for the thermal isomerization around C11=C12'in rhodopsin is elevated by about 20 kcal/mol and the thermal isomerization rate is decelerated by 10$\^$-14/ times than that of the retinal chromophore in solution, protecting photosignal from the thermal noise.

  • PDF

Performance Evaluation of a Selenium(a-Se) Based Prototype Digital Radiation Detector (비정질 셀레늄 기반 디지털 방사선 검출기의 성능 평가)

  • Park, Ji-Koon;Kang, Sang-Sik;Cho, Sung-Ho;Shin, Jung-Wook;Kim, So-Yeong;Son, Dae-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.300-305
    • /
    • 2007
  • In this study, we have studied the fabrication and the performance evaluation of digital radiation detector of the based on selenium (a-Se) prototype which is widely researched about recently. The detector was fabricated using amorphous selenium in the specification of active area size $7{\times}8.5"$, pixel pitch $139{\mu}m$, and 12 bit ADC. In order for the performance evaluation of the fabricated detector, we used radiation quality RQA 5 that is suggested by the International Electrotechnical Commission (IEC), and evaluated modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Concerning MTF measurement, we used slit camera (Nuclear Associates, Model : 07-624-2222), and evaluated in the slit method. Also so as to compare the performance evaluation on the detector fabricated in this study, we used Hologic Direct-Ray (DR-1000) and GE Revolution XQ/I system, and evaluated and compared in the same method MTF, NPS, and DQE which are image quality factors. And as a result, the MTF of each detector In Nyquist frequency were evaluated to be 58% (at 3.5 lp/mm) in the case of DR-1000 and 65% (at 2.5 lp/mm) in the case of XQ/I, and that for the detector fabricated in this study was evaluated to be 36% (at 3.51 lp/mm). Also in the case of DQE(0), the detector fabricated in this study, DR-1000 of Hologic company, and XQ/I system of GE company respectively were evaluated as 36%, 32%, and 50%.

Image System Using Dual Energy Detector (이중 에너지 검출기를 이용한 영상 시스템)

  • Yeo, Hwa-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3517-3523
    • /
    • 2010
  • Single exposure dual X-ray imaging can be used to separate soft and dense-material images for medical and industrial applications. This study keep focusing baggage inspection system(BIS) specifically. New detector modules for single exposure dual X-ray imaging are consisted of low energy detector (LED) and high energy detector (HED). First, the optimized thickness of copper filter coupled HED to separate low energy and high energy was simulated by the given X-ray energy (140 kVp, 1 mA) using Monte Carlo simulation codes, MCNPX. So as a result of simulation, the copper filter thickness is 0.7 mm. For the design of PIN photodiode, ATLAS device simulation tool was used. 16 channels PIN photodiode of 1.5 mm ${\times}$ 3.2 mm for Dual X-ray imaging detector was fabricated in the process of ETRI. And its dark current and quantum efficiency, terminal capacitance were measured. It was proven that the Lanex Fast B coupled HED were a sufficient candidate to replace the CsI(Tl) commerced in dual X-ray system, since these give a strong signal, overcoming system noise. Finally dual X-ray image was acquired through correction of the LED X-ray Image and the HED X-ray Image.

Optical Characteristics of Bolometric Terahertz Sensor (볼로미터형 테라헤르츠 센서의 광학적 특성 연구)

  • Han, Myung Soo;Song, Woosub;Hong, Jung Taek;Lee, Donghee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.335-339
    • /
    • 2018
  • The optical characteristics of a terahertz (THz) antenna-coupled bolometer (ACB) detector were evaluated using a pulsed quantum cascade laser (QCL) and radiation blackbody sources. We investigated a method for measuring the responsivity and noise-equivalent power (NEP) of the THz detector using two different types of light sources. When using a QCL source with a frequency of 3 THz, the average responsivity of 24 devices was $1.44{\times}10^3V/W$ and the average NEP of those devices was $3.33{\times}10^{-9}W/{\surd}Hz$. The average responsivity and NEP as measured by blackbody source were $1.79{\times}10^5V/W$ and $6.51{\times}10^{-11}W/{\surd}Hz$, respectively, with the measured values varying depending on the light source. This was because the output power of each light source was different, with the laser source being driven by a pulse type wave and the blackbody source being driven by a continuous wave. The power input to the THz sensor was also different. Futhermore, the responsivity and NEP values measured using band pass filter (BPF) were similar to those measured when using only THz windows. It was found that ACB sensor responds normally in the THz region to both the laser and the blackbody source, and the method was confirmed to effectively evaluate the characteristics of the THz sensor.

A Review of SERS for Biomaterials Analysis Using Metal Nanoparticles (바이오 물질 분석을 위한 금속 나노입자를 이용한 SERS 분석 연구동향)

  • Jang, Eue-Soon
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.281-300
    • /
    • 2019
  • Surface enhanced Raman scattering (SERS) was first discovered in 1974 by an unexpected Raman signal increase from Pyridine adsorbed on rough Ag electrode surfaces by the M. Fleishmann group. M. Moskovits group suggested that this phenomenon could be caused by surface plasmon resonance (SPR), which is a collective oscillation of free electrons at the surface of metal nanostructures by an external light source. After about 40 years, the SERS study has attracted great attention as a biomolecule analysis technology, and more than 2500 new papers and 500 review papers related to SERS topic have been published each year in recently. The advantages of biomaterials analysis using SERS are as follows; ① Molecular level analysis is possible based on unique fingerprint information of biomolecule, ② There is no photo-bleaching effect of the Raman reporters, allowing long-term monitoring of biomaterials compared to fluorescence microscopy, ③ SERS peak bandwidth is approximately 10 to 100 times narrower than fluorescence emission from organic phosphor or quantum dot, resulting in higher analysis accuracy, ④ Single excitation wavelength allows analysis of various biomaterials, ⑤ By utilizing near-infrared (NIR) SERS-activated nanostructures and NIR excitation lasers, auto-fluorescence noise in the visible wavelength range can be avoided from in vivo experiment and light damage in living cells can be minimized compared to visible lasers, ⑥ The weak Raman signal of the water molecule makes it easy to analyze biomaterials in aqueous solutions. For this reason, SERS is attracting attention as a next-generation non-invasive medical diagnostic device as well as substance analysis. In this review, the principles of SERS and various biomaterial analysis principles using SERS analysis will be introduced through recent research papers.

High-Speed Digital/Analog NDR ICs Based on InP RTD/HBT Technology

  • Kim, Cheol-Ho;Jeong, Yong-Sik;Kim, Tae-Ho;Choi, Sun-Kyu;Yang, Kyoung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.154-161
    • /
    • 2006
  • This paper describes the new types of ngative differential resistance (NDR) IC applications which use a monolithic quantum-effect device technology based on the RTD/HBT heterostructure design. As a digital IC, a low-power/high-speed MOBILE (MOnostable-BIstable transition Logic Element)-based D-flip flop IC operating in a non-return-to-zero (NRZ) mode is proposed and developed. The fabricated NRZ MOBILE D-flip flop shows high speed operation up to 34 Gb/s which is the highest speed to our knowledge as a MOBILE NRZ D-flip flop, implemented by the RTD/HBT technology. As an analog IC, a 14.75 GHz RTD/HBT differential-mode voltage-controlled oscillator (VCO) with extremely low power consumption and good phase noise characteristics is designed and fabricated. The VCO shows the low dc power consumption of 0.62 mW and good F.O.M of -185 dBc/Hz. Moreover, a high-speed CML-type multi-functional logic, which operates different logic function such as inverter, NAND, NOR, AND and OR in a circuit, is proposed and designed. The operation of the proposed CML-type multi-functional logic gate is simulated up to 30 Gb/s. These results indicate the potential of the RTD based ICs for high speed digital/analog applications.