DOI QR코드

DOI QR Code

Optical Characteristics of Bolometric Terahertz Sensor

볼로미터형 테라헤르츠 센서의 광학적 특성 연구

  • Han, Myung Soo (Bio-health Research Center, Korea Photonics Technology Institute) ;
  • Song, Woosub (Bio-health Research Center, Korea Photonics Technology Institute) ;
  • Hong, Jung Taek (Bio-health Research Center, Korea Photonics Technology Institute) ;
  • Lee, Donghee (Bio-health Research Center, Korea Photonics Technology Institute)
  • 한명수 (한국광기술원 바이오헬스연구센터) ;
  • 송우섭 (한국광기술원 바이오헬스연구센터) ;
  • 홍정택 (한국광기술원 바이오헬스연구센터) ;
  • 이동희 (한국광기술원 바이오헬스연구센터)
  • Received : 2018.08.22
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

The optical characteristics of a terahertz (THz) antenna-coupled bolometer (ACB) detector were evaluated using a pulsed quantum cascade laser (QCL) and radiation blackbody sources. We investigated a method for measuring the responsivity and noise-equivalent power (NEP) of the THz detector using two different types of light sources. When using a QCL source with a frequency of 3 THz, the average responsivity of 24 devices was $1.44{\times}10^3V/W$ and the average NEP of those devices was $3.33{\times}10^{-9}W/{\surd}Hz$. The average responsivity and NEP as measured by blackbody source were $1.79{\times}10^5V/W$ and $6.51{\times}10^{-11}W/{\surd}Hz$, respectively, with the measured values varying depending on the light source. This was because the output power of each light source was different, with the laser source being driven by a pulse type wave and the blackbody source being driven by a continuous wave. The power input to the THz sensor was also different. Futhermore, the responsivity and NEP values measured using band pass filter (BPF) were similar to those measured when using only THz windows. It was found that ACB sensor responds normally in the THz region to both the laser and the blackbody source, and the method was confirmed to effectively evaluate the characteristics of the THz sensor.

Keywords

References

  1. D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences, New York, Vol. 85, pp. 117-154, 2003.
  2. W. L. Chan, J. Deibel and D. M. Mittleman, "Imaging with terahertz radiation", Rep. Prog. Phys. Vol. 70, No. 8, pp. 1325-1379, 2007. https://doi.org/10.1088/0034-4885/70/8/R02
  3. A. Redo-Sanchez and X.-C.Zhang, "Terahertz science and technology trends", IEEE J. Sel. Top. Quantum Electron. Vol. 14, No. 2, pp. 260-269, 2008. https://doi.org/10.1109/JSTQE.2007.913959
  4. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein and M. Koch, "Terahertz imaging: applications and perspectives", Appl. Optics Vol. 49, No. 19, pp. E48-E57, 2010. https://doi.org/10.1364/AO.49.000E48
  5. B. N. Behnken and G. Karunasiri, "Real-time terahertz imaging of nonmetallic objects for security screening and anticounterfeiting applications", Proc. of SPIE Vol. 7117, No. 711705, pp. 1-10, 2008.
  6. C. Weg, W. von Spiegel, R. Henneberg, R. Zimmermann, T. Loeffler and H. G. Roskos, "Fast Active THz Cameras with Ranging Capabilities", J. Infrared Milli Terahz Waves Vol. 30, No. 12, pp. 1281-1296, 2009.
  7. P. Dean, M. U. Shaukat, S. P. Khanna, S. Chakraborty, M. Lachab, A. D. Burnett, A. G. Davies and E. H. Linfield, "Absorption sensitive diffuse reflection imaging of concealed powders using a terahertz quantum cascade laser", Optics Express Vol. 16, No. 9, pp. 5997-6007, 2008. https://doi.org/10.1364/OE.16.005997
  8. E. Heinz, T. May, G. Zieger, D. Born, S. Anders, G. Thorwirth, V. Zakosarenko, M. Schubert, T. Krause, M. Stark- loff, A. Krüger, M. Schulz, F. Bauer and H. G. Meyer, "Passive submillimeter-wave stand-off video camera for security applications", J. Infrared Millimeter. Terahertz Waves Vol. 31, No. 11, pp. 1355-1369, 2010. https://doi.org/10.1007/s10762-010-9716-y
  9. A. Luukanen, L. Gronberg, T. Haarnoja, P. Helisto, K. Kataja, M. Leivo, A. Rautiainen, J. Penttila, J. E. Bjarnason, C. R. Dietlein, M. D. Ramirez and E. N. Grossman, "Passive THz imaging system for stand-off identification of concealed objects: Results from a turn-key 16 pixel imager", Proc. SPIE Vol. 6948, No. 69480O, pp. 1-9, 2008.
  10. T. Loffler, C. Weg and H. G. Roskos, "Continuous-wave terahertz imaging with a hybrid system", Appl. Phys. Lett. Vol. 90, No. 091111, pp. 1-5, 2007.
  11. L. Wegner, H. W. Hubers, P. Meindl, H. Richter and A. Steiger, "Towards traceable radiometry in the terahertz region", Metrologia Vol. 46, No. 4, pp. S160-S164, 2009. https://doi.org/10.1088/0026-1394/46/4/S05
  12. A. Steiger, "Traceable terahertz power measurement by using optical methods", Proc. SPIE Vol. 7485, No. 74850J, pp. 1-7, 2009.
  13. R. P. Shea, S. Gawarikar and J. J. Talghader, "Midwave thermal infrared detection using semiconductor selective absorption", Opt. Express Vol. 18, No. 22, pp. 22833-22841, 2010. https://doi.org/10.1364/OE.18.022833