• Title/Summary/Keyword: quantum neural networks

Search Result 12, Processing Time 0.02 seconds

Trends in quantum reinforcement learning: State-of-thearts and the road ahead

  • Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.748-758
    • /
    • 2024
  • This paper presents the basic quantum reinforcement learning theory and its applications to various engineering problems. With the advances in quantum computing and deep learning technologies, various research works have focused on quantum deep learning and quantum machine learning. In this paper, quantum neural network (QNN)-based reinforcement learning (RL) models are discussed and introduced. Moreover, the pros of the QNN-based RL algorithms and models, such as fast training, high scalability, and efficient learning parameter utilization, are presented along with various research results. In addition, one of the well-known multi-agent extensions of QNN-based RL models, the quantum centralized-critic and multiple-actor network, is also discussed and its applications to multi-agent cooperation and coordination are introduced. Finally, the applications and future research directions are introduced and discussed in terms of federated learning, split learning, autonomous control, and quantum deep learning software testing.

Consciousness, Cognition and Neural Networks in the Brain: Advances and Perspectives in Neuroscience

  • Muhammad Saleem;Muhammad Hamid
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • This article reviews recent advances and perspectives in neuroscience related to consciousness, cognition, and neural networks in the brain. The neural mechanisms underlying cognitive processes, such as perception, attention, memory, and decision-making, are explored. The article also examines how these processes give rise to our experience of consciousness. The implications of these findings for our understanding of the brain and its functions are presented, as well as potential applications of this knowledge in fields such as medicine, psychology, and artificial intelligence. Additionally, the article explores the concept of a quantum viewpoint concerning consciousness, cognition, and creativity and how incorporating DNA as a key element could reconcile classical and quantum perspectives on human behaviour, consciousness, and cognition, as explained by genomic psychological theory. Furthermore, the article explains how the human brain processes external stimuli through the sensory nervous system and how it can be simulated using an artificial neural network (ANN) consisting of one input layer, multiple hidden layers, and an output layer. The law of learning is also discussed, explaining how ANNs work and how the modification of weight values affects the output and input values. The article concludes with a discussion of future research directions in this field, highlighting the potential for further discoveries and advancements in our understanding of the brain and its functions.

Optimization of Device Process Parameters for GaAs-AlGaAs Multiple Quantum Well Avalanche Photodiodes Using Genetic Algorithms (유전 알고리즘을 이용한 다중 양자 우물 구조의 갈륨비소 광수신소자 공정변수의 최적화)

  • 김의승;오창훈;이서구;이봉용;이상렬;명재민;윤일구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.241-245
    • /
    • 2001
  • In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.

  • PDF

A counting-time optimization method for artificial neural network (ANN) based gamma-ray spectroscopy

  • Moonhyung Cho;Jisung Hwang;Sangho Lee;Kilyoung Ko;Wonku Kim;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2690-2697
    • /
    • 2024
  • With advancements in machine learning technologies, artificial neural networks (ANNs) are being widely used to improve the performance of gamma-ray spectroscopy based on NaI(Tl) scintillation detectors. Typically, the performance of ANNs is evaluated using test datasets composed of actual spectra. However, the generation of such test datasets encompassing a wide range of actual spectra representing various scenarios often proves inefficient and time-consuming. Thus, instead of measuring actual spectra, we generated virtual spectra with diverse spectral features by sampling from categorical distribution functions derived from the base spectra of six radioactive isotopes: 54Mn, 57Co, 60Co, 134Cs, 137Cs, and 241Am. For practical applications, we determined the optimum counting time (OCT) as the point at which the change in the Kullback-Leibler divergence (ΔKLDV) values between the synthetic spectra used for training the ANN and the virtual spectra approaches zero. The accuracies of the actual spectra were significantly improved when measured up to their respective OCTs. The outcomes demonstrated that the proposed method can effectively determine the OCTs for gamma-ray spectroscopy based on ANNs without the need to measure actual spectra.

A Novel Multi-Quantum Well Injection Mode Diode And Its Application for the Implementation of Pulse-Mode Neural Circuits (다중 양자우물 주사형 다이오드와 펄스-모드 신경회로망 구현을 위한 그 응용)

  • Song Chung Kun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.62-71
    • /
    • 1994
  • A novel semiconductor device is proposed to be used as a processing element for the implementation of pulse-mode neural networks which consists of alternating n' GaAs quantum wells and undoped AlGaAs barriers sandwitched between n' GaAs cathode and P' GaAs anode and in simple circuit in conjunction with a parallel capacitive and resistive load the trigger circuit generates neuron-like pulse train output mimicking the function of axon hillock of biological neuron. It showed the sigmoidal relationship between the frequency of the pulse-train and the applied input DC voltage. In conjunction with MQWIMD the various neural circuits are proposed especially a neural chip monolithically integrated with photodetectors in order to perfrom the pattern recognition.

  • PDF

Enhanced Hybrid Quantum-Classical Convolutional Neural Networks (향상된 하이브리드 양자-고전적 컨벌루션 신경망)

  • Sung-Wook Park;Jun-Yeong Kim;Jun Park;Se-Hoon Jung;Chun-Bo Sim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.481-482
    • /
    • 2023
  • 양자 컴퓨팅 환경에서 빅데이터를 이용하는 Quantum Artificial Intelligence(QAI)는 빠른 계산 속도를 추구한다. 최근 금융, 물류, 교통 분야의 QAI 모델과 이미지 분류용 quantum convolutional neural network가 소개됐지만 아직 완벽한 성능은 달성하지 못했다. 본 논문은 성능 향상을 위한 모듈을 새로 제시하고, 이를 소형 양자 컴퓨터에 적용하며 하이브리드 모델 구성을 가능하게 한다. 실험 결과, 제안하는 방법은 기존 네트워크와 비교해 우수한 성능을 보였다.

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

A model for neural trigger circuit using AlGaAs/GaAs MQW-IMD (AlGaAs/GaAs MQW-IMD를 사용하는 신경구동회로의 모델)

  • Song, Chung-Kun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.47-56
    • /
    • 1995
  • In this paper the model of the MQE-IMD-based neural trigger circuit is improved, where MQW-IMD is a new semiconductor device proposed and experimentally demonstrated by the author for the hardware implementation of the neural networks. The electron energy of AlXGa1-XAsbarrier is calculated by Ensemble Monte Carlo simulation according to the variation of Al mole fraction x and the applied electric field, whtich had been roughly estimated in the previous paper because of the difficulty to get the data. And in the consideration of the tunneling of the confined electrons within the quantum well the accuracy of the impact ionization rate is enhaned. Finally, the dependance of the frequency of pulse-train on the number of quantum wells can be calculated by modelling the effect of the distance of the induced positive charge from the cathode on the electric field at the cathode.

  • PDF

Combination of fuzzy models via economic management for city multi-spectral remote sensing nano imagery road target

  • Weihua Luo;Ahmed H. Janabi;Joffin Jose Ponnore;Hanadi Hakami;Hakim AL Garalleh;Riadh Marzouki;Yuanhui Yu;Hamid Assilzadeh
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.531-548
    • /
    • 2024
  • The study focuses on using remote sensing to gather data about the Earth's surface, particularly in urban environments, using satellites and aircraft-mounted sensors. It aims to develop a classification framework for road targets using multi-spectral imagery. By integrating Convolutional Neural Networks (CNNs) with XGBoost, the study seeks to enhance the accuracy and efficiency of road target identification, aiding urban infrastructure management and transportation planning. A novel aspect of the research is the incorporation of quantum sensors, which improve the resolution and sensitivity of the data. The model achieved high predictive accuracy with an MSE of 0.025, R-squared of 0.85, RMSE of 0.158, and MAE of 0.12. The CNN model showed excellent performance in road detection with 92% accuracy, 88% precision, 90% recall, and an f1-score of 89%. These results demonstrate the model's robustness and applicability in real-world urban planning scenarios, further enhanced by data augmentation and early stopping techniques.