• 제목/요약/키워드: quantum mechanical effects

검색결과 43건 처리시간 0.027초

신뢰와 건강 (Trust and Health: Mind-Body Problem or Integrative Medicine)

  • 손정락
    • 한국심리학회지 : 문화 및 사회문제
    • /
    • 제11권spc호
    • /
    • pp.85-95
    • /
    • 2005
  • 신뢰가 건강에 관련되는 기제를 정신-신체 의학 또는 통합의학적인 관점에서 살펴보았다. 이를 위해 양자물리학, 심신의학 및 동양의 치유방법 등의 연구성과를 알아보고 건강과 행복을 추구하는 방법도 제시하였다. 먼저, 콴툼 구조적인 사람의 몸에 관한 절에서는, 신체에는 그 자신의 정신이 있다는 연구 결과들을 알아보았는데, 여기서는 질병의 메커니즘과 원인, 의식의 객관적인 경험으로서의 몸, 의식과 정보에 영향 받는 몸 등을 다루었다. 그 다음에, 심신의학의 연구결과들을 다루었는데, 여기서는 뇌를 변화시키는 생각, 플라시보와 기대의 힘, 적극적인 노력으로 성취되는 건강, 심리신경면역학 및 치료방법들을 알아보았다. 끝으로, 몸과 마음의 행복을 위한 Benson의 실천방법을 알아보았는데, 병에서 회복하고 건강해지는데는 신념(자신에 대한 신념, 의사에 대한 신념, 치료에 대한 신념 및 자신의 영적인 신념)이 무엇보다도 중요하다는 결론에 이르렀다.

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

다이옥신의 인체 독성에 영향을 미치는 물리화학적 인자에 대한 이론적 접근 (Theoretical Approach for Physicochemical Factors Affecting Human Toxicity of Dioxins)

  • 황인철;박형석
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.65-73
    • /
    • 1999
  • Dioxins refer to a family of chemicals comprising 75 polychlorinated dibenzo-p-dioxin (PCDD) and 135 polychlorinated dibenzo-p-furan (PCDF) congeners, which may cause skin disorder, human immune system disruption, birth defects, severe hormonal imbalance, and cancer. The effects of exposure of dioxin-like compounds such as PCBs are mediated by binding to the aryl hydrocarbon receptor (AHR), which is a ligand-activated transcription factor. To grasp physicochemical factors affecting human toxicity of dioxins, six geometrical and topological indices, eleven thermodynamic variables, and quantum mechanical descriptors including ESP (electrostatic potential) were analyzed using QSAR and semi-empirical AM1 method. Planar dioxins with high lipophilicity and large surface tension show the probability that negative electrostatic potential in the lateral oxygen may make hydrogen bonding with DNA bases to be a carcinogen.

  • PDF

Detection of Second-Layer Corrosion in Aging Aircraft Fuselage

  • Kim, Noh-Yu;Achenbach, J.D.
    • 비파괴검사학회지
    • /
    • 제26권6호
    • /
    • pp.417-426
    • /
    • 2006
  • A Digital X-ray imaging system using Compton backscattering has been developed to obtain a cross-sectional profile and mass loss of corroded lap-splices of aging aircraft from density variation. A slit-type camera was designed to focus on a small scattering volume inside the material, from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the lap-joint is scanned by moving the scattering volume through the thickness direction of the specimen. The mass loss of each layer has been estimated from a Compton backscatter A-scan to obtain the thickness of each layer including the aluminum sheet, the corrosion layer and the sealant. Quantitative information such as location and width of planar corrosion in the lap splices of fuselages is obtained by deconvolution using a nonlinear least-square error minimization method(BFGS method): A simple reconstruction model is also introduced to overcome distortion of the Compton backscatter data due to attenuation effects attributed to beam hardening and quantum noise.

저온 변조 성장 기법을 이용하여 Sb가 ${\delta}$ 도핑된 다층 구조의 Si 분자선 박막 성장과 특성 분석 (Molecular beam epitaxial growth and characterization of Sb .delta.-doped Si layers using substrate temperature modulation technique)

  • Le, Chan ho
    • 전자공학회논문지A
    • /
    • 제32A권12호
    • /
    • pp.142-148
    • /
    • 1995
  • Sb ${\delta}$-doped Si layers were grown by Si MBE (Molecular Beam Epitaxy) system using substrate temperature modulation technique. The Si substrate temperatures were modulated between 350$^{\circ}C$ and 600$^{\circ}C$. The doping profile was as narrow as 41$\AA$ and the doping concentration of up to 3.5${\times}10^{20}cm^{3}$ was obtained. The film quality was as good as bulk material as verified by RHEED (Reflected High Energy Electron Diffraction), SRP (Spreading Resistance Profiling) and Hall measurement. Since the film quality is not degraded after the growth a Sb ${\delta}$-doped Si layer, the ${\delta}$-doped layers can be repeated as many times as we want. The doping technique is useful for many Si devices including small scale devices and those which utilize quantum mechanical effects.

  • PDF

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • 이경동;박명진;김도연;김수민;강병준;김성탁;김현호;이해석;강윤묵;윤석구;홍병희;김동환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구 (Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography)

  • 김호경;조민국
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.

1차원 모델링을 이용한 결정질 실리콘 태양전지의 디자인 해석 (Design Analysis of Crystalline Silicon Solar Cell Using 1-Dimensional Modelling)

  • 김동호;박상욱;조은철
    • 한국재료학회지
    • /
    • 제18권11호
    • /
    • pp.571-576
    • /
    • 2008
  • The simulation program for solar cells, PC1D, was briefly reviewed and the device modeling of a multicrystalline Si solar cell using the program was carried out to understand the internal operating principles. The effects of design parameters on the light absorption and the quantum efficiency were investigated and strategies to reduce carrier recombination, such as back surface field and surface passivation, were also characterized with the numerical simulation. In every step of the process, efficiency improvements for the key performance characteristics of the model device were determined and compared with the properties of the solar cell, whose efficiency (20.3%) has been confirmed as the highest in multicrystalline Si devices. In this simulation work, it was found that the conversion efficiency of the prototype model (13.6%) can be increased up to 20.7% after the optimization of design parameters.

적외선 센서용 극저온 용기의 냉각특성에 관한 실험적 연구 (An Experimental Study on the Cooling Characteristics of an Infrared Detector Cryochamber)

  • 강병하;이정훈;김호영
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.889-894
    • /
    • 2004
  • Infrared (IR) detectors are widely used for many applications, such as temperature measurement, intruder and fire detection, robotics and industrial equipment, thermoelstic stress analysis, medical diagnostics, and chemical analysis. Quantum detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal analysis of cryochamber includes the conduction heat transfer through a cold well, the gases conduction and gas outgassing, as well as radiation heat transfer, The transient cooling characteristics of an infrared detector cryochamber are investigated experimentally in the present study. The transient cooling load increases as the gas pressure is increased. Gas pressure becomes significant as the cooling process proceeds. Cool down time is also increased as the gas pressure is increased. It is also found that natural convection effects on cool down time become significant when the gas pressure is increased.