• 제목/요약/키워드: quantum error correction code

검색결과 8건 처리시간 0.02초

동형암호적 양자계산이 가능한 양자오류정정부호 기법 (Quantum Error Correction Code Scheme used for Homomorphic Encryption like Quantum Computation)

  • 손일권;이종현;이원혁;석우진;허준
    • 융합보안논문지
    • /
    • 제19권3호
    • /
    • pp.61-70
    • /
    • 2019
  • 최근 엄청난 계산 능력을 보여주는 양자 컴퓨터와 정보 접근성이 높고 비용이 낮은 클라우드 컴퓨팅에 대한 개발이 활발하게 이루어지고 있다. 이러한 양자 컴퓨터의 경우 양자오류정정부호가 필수적이며, 클라우드 컴퓨팅의 경우 보안성 및 계산성을 확보하기 위해 동형암호가 사용될 수 있다. 각각 다른 목적을 위해 사용되는 이 두 기법은 서로 비슷한 가정을 바탕으로 하고 있어, 양자오류정정부호를 기반으로 동형암호를 구성하는 연구들이 진행되어왔다. 따라서 본 논문에서는 일반적인 양자오류정정부호를 변형하여 동형암호적 양자정보처리가 가능한 기법을 제시한다. 기존의 양자오류정정부호를 이용한 동형암호기법의 경우 부호를 사용하였지만 오류정정 능력이 전혀 없는데 반해, 제시한 양자오류정정부호 기법을 사용하면 동형암호적 양자정보처리가 가능하면서도, 동시에 양자오류정정부호 본연의 기능인 양자정보의 연산, 저장 중의 오류를 정정할 수 있는 장점이 존재한다.

단일 비트플립 오류정정 기능을 갖는 증강된 Quantum Short-Block Code (Augmented Quantum Short-Block Code with Single Bit-Flip Error Correction)

  • 박동영;서상민;김백기
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.31-40
    • /
    • 2022
  • 본 논문은 기존 QSBC(Quantum Short-Block Code)의 기능은 보전하면서 파울리 X 및 Y 오류에 의한 단일 비트플립 오류정정 기능을 부가한 증강된 QSBC를 제안한다. 증강된 QSBC는 기존 QSBC에 정보워드 수만큼의 추가적인 보조 큐비트와 Toffoli 게이트를 삽입해 단일 파울리 X 오류의 진단과 자동정정 기능을 부여한 것이다. 본 논문은 종자 벡터를 이용한 증강된 QSBC의 일반적 확장 방법과 확장성을 반영한 단일 비트플립오류 자동정정 함수의 Toffoli 게이트 실현 방법도 제시하였다. 본 논문이 제안한 증강된 QSBC는 보조 큐비트 삽입으로 인해 코딩률이 최소 1/3과 최대 1/2인 trade-off를 갖는다.

결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향 (Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing)

  • 조은영;온진호;김재열;차규일
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.

Optimal execution of logical Hadamard with low-space overhead in rotated surface code

  • Sang-Min Lee;Ki-Sung Jin;Soo-Cheol Oh;Jin-Ho On;Gyu-Il Cha
    • ETRI Journal
    • /
    • 제46권5호
    • /
    • pp.759-773
    • /
    • 2024
  • Fault-tolerant quantum computation requires error-correcting codes that enable reliable universal quantum operations. This study introduces a novel approach that executes the logical Hadamard with low-space requirements while preserving the original definition of logical operators within the framework of the rotated surface codes. Our method leverages a boundary deformation method to rotate the logical qubit transformed by transversal Hadamard. Following this, the original encoding of the logical qubit is reinstated through logical flipand-shift operations. The estimated space-time cost for a logical Hadamard operation with a code distance d is 5d2 + 3d2 . The efficiency enhancement of the proposed method is approximately four times greater than those of previous approaches, regardless of the code distance. Unlike the traditional method, implementing a logical Hadamard requires only two patches instead of seven. Furthermore, the proposed method ensures the parallelism of quantum circuits by preventing interferences between adjacent logical data qubits.

대칭용량 달성을 위한 극 퀀텀 채널 코딩 (Polar Quantum Channel Coding for Symmetric Capacity Achieving)

  • 양재승;박주용;이문호
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.3-14
    • /
    • 2013
  • 본 논문에서는 어떠한 이진 입력 이산 퀀텀채널(quantum channel)이 주어지더라도 대칭 용량을 달성할 수 있는 qubit(quantum bit)를 생성하기 위해, 극(polar) 퀀텀 채널 코딩이라 부르는 퀀텀 채널의 결합과 분리 형태를 제시한다. 현재의 용량은 동등 확률을 갖는 임의의 qubit 입력에 따라서 결정된다. 퀀텀채널의 분극은 대칭채널이 1에 근접하면 rate 1로 아니면 rate 0으로 전송하는 채널을 통해 퀀텀 데이터를 부분적으로 전송하는 퀀텀 오류정정 부호화에 아주 적합하다.

듀얼 유니버셜 해쉬 함수를 이용한 양자 키 분배 시스템의 보안성 증폭 (Privacy Amplification of Quantum Key Distribution Systems Using Dual Universal Hush Function)

  • 이선의;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.38-42
    • /
    • 2017
  • 본 논문은 양자 키 분배 시스템에서의 보안성을 증폭시키기 위한 이중 해시 함수의 개념을 소개한다. 양자 오류 정정과 보안사이의 관계를 이용하여 보안성 증폭을 제공하는 것을 보인다. 또한 보안성 증폭 측면에서 접근 방식이 위상 오차 보정 방식이 더 보다 나은 보안성을 제시한다는 것을 보인다. QKD의 대표적인 예인 BB84 프로토콜을 이용하여 유니버셜 해시 함수가 보안성을 강화하는 과정을 설명한다. 마지막으로 결정적인 유니버셜 해시 함수가 메시지의 길이에 의존하지 않고 양자 Pauli 채널에서 보안성을 평가 받는 것을 유도한다.

TiGER의 복호화 실패율 분석 (Analysis on Decryption Failure Probability of TiGER)

  • 이승우;김종현;박종환
    • 정보보호학회논문지
    • /
    • 제34권2호
    • /
    • pp.157-166
    • /
    • 2024
  • LWE(learning with errors) 문제 기반의 공개키 암호는 기법 설계 및 파라미터 설정에 따라 복호화 실패율이 주어지는데, 높은 복호화 실패율은 실용성의 저하를 불러올뿐만 아니라 기법에 대한 공격으로 이어질 수 있음이 밝혀진 바 있다[1]. 따라서, KpqC 1차 라운드에 제안된 Ring-LWE 기반 KEM 기법인 TiGER[2]는 오류 보정 코드 (error correction code) Xef와 D2 인코딩 방법을 사용함으로써 복호화 실패율을 낮추고자 하였다. 그런데, Ring-LWE 문제에 기반한 암호화 기법 중 오류 보정 코드를 사용하는 기법의 경우 흔히 가정하는 각 비트 오류의 독립성이 성립하지 않음이 알려진 바 있다[3]. TiGER의 복호화 실패율 계산은 이를 고려하지 않은바, 본 논문에서는 오류 의존성을 고려하여 복호화 실패율을 다시 계산한다. 또한, TiGER(v2.0)의 비트 오류가 잘못 계산되었음을 발견하여 올바른 비트 오류 계산 식과 그에 따라 새로 계산한 복호화 실패율을 제시한다.

A multilayered Pauli tracking architecture for lattice surgery-based logical qubits

  • Jin-Ho, On;Chei-Yol Kim;Soo-Cheol Oh;Sang-Min Lee;Gyu-Il Cha
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.462-478
    • /
    • 2023
  • In quantum computing, the use of Pauli frames through software traces of classical computers improves computation efficiency. In previous studies, error correction and Pauli operation tracking have been performed simultaneously using integrated Pauli frames in the physical layer. In such a complex processing structure, the number of simultaneous operations processed in the physical layer exponentially increases as the distance of the surface code encoding logical qubit increases. This study proposes a Pauli frame management architecture partitioned into two layers for a lattice surgery-based surface code and describes its structure and operation rules. To evaluate the effectiveness of our method, we generated a random circuit according to the gate ratios constituting the commonly known quantum circuits and compared the generated circuit with the existing Pauli frame and our method. Simulations show a decrease of about 5% over traditional methods. In the case of experiments that only increase the code distance of the logical qubit, it can be seen that the effect of reducing the physical operation through the logical Pauli frame becomes more important.