• Title/Summary/Keyword: quantum dots

Search Result 441, Processing Time 0.035 seconds

SWIR-LWIR Photoluminescence from Sb-based Epilayers Grown on GaAs Substrates by using MBE

  • Hussain, Laiq;Pettersson, Hakan;Wang, Qin;Karim, Amir;Anderson, Jan;Jafari, Mehrdad;Song, Jindong;Choi, Won Jun;Han, Il Ki;Lim, Ju Young
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1604-1611
    • /
    • 2018
  • Utilizing Sb-based bulk epilayers on large-scale low-cost substrates such as GaAs for fabricating infrared (IR) photodetectors is presently attracting significant attention worldwide. For this study, three sample series of $GaAs_xSb_{1-x}$, $In_{1-x}Ga_xSb$, and $InAs_xSb_{1-x}$ with different compositions were grown on semi-insulating GaAs substrates by using molecular beam epitaxy (MBE) and appropriate InAs quantum dots (QDs) as a defect-reduction buffer layer. Photoluminescence (PL) signals from these samples were observed over a wide IR wavelength range from $2{\mu}m$ to $12{\mu}m$ in agreement with the expected bandgap, including bowing effects. In particular, interband PL signals from $InAs_xSb_{1-x}$ and $In_{1-x}Ga_xSb$ samples even at room temperature show promising potential for IR photodetector applications.

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.263-272
    • /
    • 2011
  • Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.

Study of Multi-stacked InAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법을 이용한 적층 InAs 양자점 적외선 수광소자 성장 및 특성 평가 연구)

  • Kim, Jung-Sub;Ha, Seung-Kyu;Yang, Chang-Jae;Lee, Jae-Yel;Park, Se-Hun;Choi, Won-Jun;Yoon, Eui-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2010
  • We grew multi-stacked InAs/$In_{0.1}Ga_{0.9}As$ DWELL (dot-in-a-well) structure by metal organic chemical vapor deposition and investigated optical properties by photoluminescence and I-V characteristics by dark current measurement. When stacking InAs quantum dots (QDs) with same growth parameter, the size and density of QDs were changed, resulting in the bimodal emission peak. By decreasing the flow rate of TMIn, we achieved the uniform multi-stacked QD structure which had the single emission peak and high PL intensity. As the growth temperature of n-type GaAs top contact layer (TCL) is above $600^{\circ}C$, the PL intensity severely decreased and dark current level increased. At bias of 0.5 V, the activation energy for temperature dependence of dark current decreased from 106 meV to 48 meV with increasing the growth temperature of n-type GaAs TCL from 580 to $650^{\circ}C$. This suggest that the thermal escape of bounded electrons and non-radiative transition become dominant due to the thermal inter-diffusion at the interface between InAs QDs and $In_{0.1}Ga_{0.9}As$ well layer.

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • Lee, Gyeong-Dong;Park, Myeong-Jin;Kim, Do-Yeon;Kim, Su-Min;Gang, Byeong-Jun;Kim, Seong-Tak;Kim, Hyeon-Ho;Lee, Hae-Seok;Gang, Yun-Muk;Yun, Seok-Gu;Hong, Byeong-Hui;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

Effects of hydrogen plasma on the formation of self-organized InAs-quantum dot structure (자기조직화에 의한 InAs 양자점 구조 형성에 미치는 수소플라즈마의 효과)

  • ;;;K. Ozasa;Y. Aoyagi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.351-359
    • /
    • 1996
  • We have investigated the effect of hydrogen plasma on the formation of InAs QDs (quantum dots) structure by using a CBE (chemical beam epitaxy)system equipped with ECR (electron cyclotron resonance) plasma source. It is confirmed that the formation of self-organized InAs-QDs on GaAs is started after the growth of InAs layer up to 2.6 ML (monolayer) with the irradiation of hydrogen plasma while it is started after 1.9 ML without hydrogen gas and hydrogen plasma through the observation of RHEED patterns. Density and size of the QDs formed at $T_{sub}=370^{\circ}C$ are $1.9{\times}10^{11}cm^{-2}$ and 17.7 nm without hydrogen plasma, and $1.3{\times}10^{11}cm^{-2}$ and 19.4 nm with hydrogen plasma, respectively. It is also observed from the PL(photoluminescence) measurement on InAs-QDs that red shift in PL peak energy and broadening in FWHM (full width at half maximum)of PL peak caused by the effects of hydrogen plasma on the increment of size and its distribution. These effects of hydrogen plasma are considered as a act of atomic hydrogen which enhances the layer-growth of InAs on GaAs resulted from the relief of misfit strain between GaAs substrate and InAs.

  • PDF

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Photoluminescence Quenching and Recovery of the CdSe Nanocrystals by Metal Ions (금속이온에 의한 CdSe 나노결정의 형광 소광 및 회복 특성)

  • Bang, Jiwon;Kim, Bomi;Koo, Eunhae;Kim, Sungjee
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • Copper ion induced photoluminescence (PL) quenching dynamics and recovery of the PL by zinc ions were investigated for CdSe based nanocrystals. When copper ions were added, CdSe quantum dots showed fast and dramatically PL quenching whereas PL of CdSe nanorod gradually decreased. In the presence of zinc ions, the PL of CdSe/CdS (core/shell) nanocrystals that have quenched by copper ions was efficiently recovered. It showed that the PL intensity of nanocrystals increased by 50% in a solution containing 1 μM zinc ions. The PL intensity was increasing with increasing zinc ions, and could be described by Langmuir binding isotherm model. We showcase that the CdSe based nanocrystals can be used as fluorescence turn-on sensor.

FRET-Based Quantitative Discrimination of Bisulfite-Untreated DNA from Bisulfite-Treated DNA

  • Lee, Eun Jeong;Cho, Yea Seul;Song, Seongeun;Hwang, Sang-Hyun;Hah, Sang Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1455-1459
    • /
    • 2014
  • We report a sensitive and reliable FRET-based nanotechnology assay for efficient detection and quantification of bisulfite-unmodified or modified DNA. Bisulfite-untreated DNA or bisulfite-treated DNA is subjected to PCR amplification with biotin-conjugated primers so that the amounts of bisulfite-untreated and treated DNA can be differentiated. Streptavidin-coated quantum dots (QDs) are used to capture biotinylated PCR products intercalated with SYBR Green, enabling FRET measurement. Key features of our method include its low intrinsic background noise, high resolution, and high sensitivity, enabling detection of as little as 1.75 ng of bisulfite-untreated DNA in the presence of an approximately 1,000-fold excess of bisulfite-untreated DNA compared to bisulfate-treated DNA, with the use of PCR reduced (as low as 15 cycles). SYBR Green as an intercalating dye as well as a FRET acceptor allows for a single-step preparation without the need for primers or probes to be chemically conjugated to an organic fluorophore. Multiple acceptors per FRET donor significantly enhance the signal-to-noise ratio as well. In consideration of the high relevance of bisulfite treatment to DNA methylation quantitation, our system for FRET measurement between QDs and intercalating dyes can be generally utilized to analyze DNA methylation and to potentially benefit the scientific and clinical community.

Probing Organic Ligands and their Binding Schemes on Nanocrystals by Mass Spectrometric and FT-IR Spectroscopic Imaging

  • Son, Jin Gyeong;Choi, Eunjin;Piao, Yuanzhe;Han, Sang Woo;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.355-355
    • /
    • 2016
  • There has been an explosive development of nanocrystal (NC) synthesis and application due to their composition-dependent specific properties. Despite the composition, shape, and size of NCs foremost determine their physicochemical properties, the surface state and molecule conjugation also drastically change their characteristics. To make practical use of NCs, it is a prerequisite to understand the NC surface state and the degree to which they have been modified because the reaction occurs on the interface between the NCs and the surrounding medium. We report in here an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Since the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify the n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveals the OPA ligands' binding state as bidentate complexes.

  • PDF

InP 기판에 형성한 InAs/InAlGaAs 양자점의 광학적 특성

  • Lee, Ha-Min;Jo, Byeong-Gu;Choe, Il-Gyu;Park, Dong-U;Lee, Gwan-Jae;Lee, Cheol-Ro;Kim, Jin-Su;Han, Won-Seok;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.194.2-194.2
    • /
    • 2015
  • 본 논문에서는 InP 기판에 자발형성법 (Self-assembled Mode)으로 성장한 InAs/InAlGaAs 양자점(Quantum Dots)의 외부 열처리 온도에 따른 광학적 특성을 논의한다. 분자선증착기 (Molecular Beam Epitaxy, VH80MBE)로 5주기 적층구조를 갖는 InAs/InAlGaAs 양자점 시료 (기준시료)를 성장 후 온도 의존성 및 여기광세기 의존성 포토루미네슨스 (photoluminescence, PL) 분광법으로 기본특성을 평가하였다. 양자점 시료를 $500{\sim}800^{\circ}C$에서 열처리를 수행하고 광학적 특성을 열처리 전과 비교하여 분석하였다. $550^{\circ}C$에서 열처리한 InAs/InAlGaAs 양자점 시료의 저온 (11K) PL 파장은 1465 nm를 보였으며, 이는 열처리를 하지 않은 기준시료의 1452 nm 보다 13 nm 장파장으로 이동하였다. 열처리 온도가 $700^{\circ}C$ 이상인 경우, 양자점 PL 파장이 다시 단파장으로 이동하는 현상을 보였지만 여전히 열처리하지 않은 기준시료보다 장파장을 나타내었다. $700^{\circ}C$에서 열처리한 양자점 시료의 저온 PL 광세기는 기준시료보다 15.5배 더 크게 나타났으며, 주변 온도가 증가할수록 더디게 감소하는 것을 확인할 수 있었다. 온도의존성 PL로부터 구한 활성화에너지 (Activation Energy)는 $700^{\circ}C$ 열처리 온도의 경우 175.9 meV를 나타내었다. InAs/InAlGaAs 양자점 시료의 열처리 온도에 따른 광특성 변화를 InAs 양자점과 InAlGaAs 장벽층 계면에서 III족 원소인 In, Al 및 Ga의 상호확산과 결함이 완화되는 현상으로 해석할 수 있다.

  • PDF