Browse > Article
http://dx.doi.org/10.3938/jkps.73.1604

SWIR-LWIR Photoluminescence from Sb-based Epilayers Grown on GaAs Substrates by using MBE  

Hussain, Laiq (Department of Mathematics, Physics and Electrical Engineering, Halmstad University)
Pettersson, Hakan (Department of Mathematics, Physics and Electrical Engineering, Halmstad University)
Wang, Qin (Acreo Swedish ICT AB)
Karim, Amir (Acreo Swedish ICT AB)
Anderson, Jan (Acreo Swedish ICT AB)
Jafari, Mehrdad (Department of Mathematics, Physics and Electrical Engineering, Halmstad University)
Song, Jindong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Choi, Won Jun (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Han, Il Ki (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Lim, Ju Young (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Abstract
Utilizing Sb-based bulk epilayers on large-scale low-cost substrates such as GaAs for fabricating infrared (IR) photodetectors is presently attracting significant attention worldwide. For this study, three sample series of $GaAs_xSb_{1-x}$, $In_{1-x}Ga_xSb$, and $InAs_xSb_{1-x}$ with different compositions were grown on semi-insulating GaAs substrates by using molecular beam epitaxy (MBE) and appropriate InAs quantum dots (QDs) as a defect-reduction buffer layer. Photoluminescence (PL) signals from these samples were observed over a wide IR wavelength range from $2{\mu}m$ to $12{\mu}m$ in agreement with the expected bandgap, including bowing effects. In particular, interband PL signals from $InAs_xSb_{1-x}$ and $In_{1-x}Ga_xSb$ samples even at room temperature show promising potential for IR photodetector applications.
Keywords
SWIR; MWIR; LWIR; Sb-based thin films; IR detector;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Joo, T. Kim, S. H. Shin, J. Y. Lim, J. Hong, J. D. Song, J. Chang, H-W. Lee, K. Rhie, S. H. Han, K-H. Shin and M. Johnson, Nature 494, 72 (2013), doi:10.1038/nature11817.   DOI
2 K. H. Yoen, J. D. Song, E. H. Lee, H. J. Jang, M. H. Bae, J. Y. Kim, I. K. Han and W. J. Choi, Materials Research Bulletin 57, 152 (2014), doi:10.1016/j.materresbull.2014.05.040.   DOI
3 Y. Z. Gao, X. Y. Gong, W. Z. Fang, G. H. Wu and Y. B. Feng, 48, 0802021 (2009), doi:10.1143/JJAP.48.080202.   DOI
4 I. Shafir, M. Katz, A. Sher, A. Raizman, A. Zussman and M. Nathan, Semiconductor Science and Technology 25, 45 (2010).
5 C. H. Sun, Q. W. Wang, F. Qiu, Y. F. Lv, H. Y. Deng, S. H. Hu and N. Dai, Journal of Alloys and Compounds 535, 39 (2012).   DOI
6 J. B.Wang, S. R. Johnson, S. A. Chaparro, D. Ding, Y. Cao, Y. G. Sadofyev, Y. H. Zhang, J. A. Gupta and C. Z. Guo, Phys. Rev. B - Condensed Matter and Materials Physics 70, 1 (2004).
7 G. Liu, S. Chuang, S. Park and S. Park, J. Appl. Phys. 88, 5554 (2009).
8 M. Ferhat, Physica Status Solidi 241, 38 (2004).   DOI
9 J. Tatebayashi, B. Liang, D. A. Bussian, H. Htoon, S. Huang, G. Balakrishnan, V. Klimov, L. R. Dawson and D. L. Huffaker, IEEE Transactions on Nanotechnology 8, 269 (2009).   DOI
10 P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang and A. Krier, Physica B 407, 1493 (2012).   DOI
11 K. Gradkowski, T. J. Ochalski, D. P. Williams, J. Tatebayashi, A. Khoshakhlagh, G. Balakrishnan, E. P. O'Reilly, G. Huyet, L. R. Dawson and D. L. Huffaker, Journal of Luminescence 129, 456 (2009).   DOI
12 M. Y. Yen, R. People and K. W. Wecht, J. Appl. Phys. 64, 952 (1988).   DOI
13 F. Hatami, N. N. Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, U. Richter, S. V. Ivanov, B. Y. Meltser, P. S. Kop'Ev and Z. I. Alferov, Applied Physics Letters, 67 656-658 (1995).   DOI
14 N. N. Ledentsov, J. Bohrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Ya. Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. KopEv and Z. I. Alferov, Phys. Rev. B 52, 14058 (1995).   DOI
15 Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen and G. B. Stringfellow, J. Appl. Phys. 67, 7034 (1990).   DOI
16 H. Martijn, C. Asplund, R. M. von Wurtemberg and H. Malm, in Proc. SPIE 8704, Infrared Technology and Applications XXXIX. 8704 87040Z-87040Z-9 (2013), doi:10.1117/12.2016602.
17 A. Rogalski, Infrared Physics and Technology. 54, 136 (2011), doi:10.1016/j.infrared.2010.12.003.   DOI
18 A. V. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh and S. Krishna, Appl. Phys. Lett. 97, 2008 (2010). doi:10.1063/1.3475022.
19 O. Gustafsson, A. Karim, C. Asplund, Q. Wang, T. Zabel, S. Almqvist, S. Savage, J. Y. Andersson and M. Hammar, Infrared Physics and Technology 61, 319 (2013), doi:10.1016/j.infrared.2013.09.009.   DOI
20 I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001), doi:10.1063/1.1368156.   DOI
21 T. J. Kim, J. J. Yoon, S. Y. Hwang, D. E. Aspnes, Y. D. Kim, H. J. Kim, Y. C. Chang and J. D. Song, Appl. Phys. Lett. 95, 111902 (2009) doi:10.1063/1.3216056.   DOI
22 T. J. Kim, J. J. Yoon, J. S. Byun, S. Y. Hwang, D. E. Aspnes, S. H. Shin, J. D. Song, C. T. Liang, Y. C. Chang, N. S. Barange, J. Y. Kim and Y. D. Kim, Appl. Phys. Lett. 102, 3 (2013), doi:10.1063/1.4795622.
23 J. Y. Lim, J. D. Song and H. S. Yang, Thin Solid Films 520, 6589 (2012), doi:10.1016/j.tsf.2012.06.077.   DOI