• Title/Summary/Keyword: quantum attack

Search Result 37, Processing Time 0.022 seconds

Quantum rebound attacks on reduced-round ARIA-based hash functions

  • Seungjun Baek;Jongsung Kim
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.365-378
    • /
    • 2023
  • ARIA is a block cipher proposed by Kwon et al. at ICISC 2003 that is widely used as the national standard block cipher in the Republic of Korea. Herein, we identify some flaws in the quantum rebound attack on seven-round ARIA-DM proposed by Dou et al. and reveal that the limit of this attack is up to five rounds. Our revised attack applies to not only ARIA-DM but also ARIA-MMO and ARIA-MP among the PGV models, and it is valid for all ARIA key lengths. Furthermore, we present dedicated quantum rebound attacks on seven-round ARIA-Hirose and ARIA-MJH for the first time. These attacks are only valid for the 256-bit key length of ARIA because they are constructed using the degrees of freedom in the key schedule. All our attacks are faster than the generic quantum attack in the cost metric of the time-space tradeoff.

Quantum Cryptanalysis for DES Through Attack Cost Estimation of Grover's Algorithm (Grover 알고리즘 공격 비용 추정을 통한 DES에 대한 양자 암호 분석)

  • Jang, Kyung-bae;Kim, Hyun-Ji;Song, Gyeong-Ju;Sim, Min-Ju;Woo, Eum-Si;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1149-1156
    • /
    • 2021
  • The Grover algorithm, which accelerates the brute force attack, is applicable to key recovery of symmetric key cryptography, and NIST uses the Grover attack cost for symmetric key cryptography to estimate the post-quantum security strength. In this paper, we estimate the attack cost of Grover's algorithm by implementing DES as a quantum circuit. NIST estimates the post-quantum security strength based on the attack cost of AES for symmetric key cryptography using 128, 192, and 256-bit keys. The estimated attack cost for DES can be analyzed to see how resistant DES is to attacks from quantum computers. Currently, since there is no post-quantum security index for symmetric key ciphers using 64-bit keys, the Grover attack cost for DES using 64-bit keys estimated in this paper can be used as a standard. ProjectQ, a quantum programming tool, was used to analyze the suitability and attack cost of the quantum circuit implementation of the proposed DES.

A Quantum Free-Start Collision Attack on the Ascon-Hash (양자 컴퓨팅 환경에서의 Ascon-Hash에 대한 Free-Start 충돌 공격)

  • Cho, Sehee;Baek, Seungjun;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.617-628
    • /
    • 2022
  • Ascon is one of the final round candidates of the NIST lightweight cryptography contest, which has been underway since 2015, and supports hash modes Ascon-Hash and Ascon-Xof. In this paper, we develop a MILP model for collision attack on the Ascon-Hash and search for a differential trail that can be used in a quantum setting through the model. In addition, we present an algorithm that allows an attacker who can use a quantum computer to find a quantum free-start collision attack of 3-round Ascon-Hash using the discovered differential trail. This attack is meaningful in that it is the first to analyze a collision attack on Ascon-Hash in a quantum setting.

A NTRU-based Authentication and Key Distribution Protocol for SIP (SIP에서 NTRU 기반 인증 및 키 분배 프로토콜)

  • Jeong, SeongHa;Park, KiSung;Lee, KyungKeun;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1768-1775
    • /
    • 2017
  • The SIP(Session Initiation Protocol) is an application layer call signaling protocol which can create, modify and terminate the session of user, and provides various services in combination with numerous existing protocols. However, most of cryptosystems for SIP cannot prevent quantum computing attack because they have used ECC(Elliptic Curve Cryptosystem). In this paper, we propose a NTRU based authentication and key distribution protocol for SIP in order to protect quantum computing attacks. The proposed protocol can prevent various attacks such as quantum computing attack, server spoofing attack, man-in-the middle attack and impersonation attack anonymity, and our protocol can provide user's anonymity.

Security Analysis on TiGER KEM in KpqC Round 1 Competition Using Meet-LWE Attack (KpqC 1 라운드 TiGER KEM의 Meet-LWE 공격에 대한 안전성 분석)

  • Joohee Lee;Eun-min Lee;Jiseung Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.709-719
    • /
    • 2023
  • Recently, Post-Quantum Cryptography (PQC), which is secure against attacks using quantum computers, has been actively studied. In 2022, the KpqC competition, a competition for domestic PQC standardization, was launched, and a total of 16 candidate algorithms were received, and the first round is underway. In this paper, we apply Alexander May's Meet-LWE attack to TiGER, a lattice-based key encapsulation mechanism that is a candidate for the first round of the KpqC competition, and analyze its concrete attack complexity. The computational results of applying the Meet-LWE attack to each of the proposed parameters of TiGER show that the proposed TiGER192 parameter, which targets 192-bit quantum security, actually achieves 170-bit classical security. In addition, we propose a parameter setting to increase the attack complexity against the Meet-LWE attack.

A Study on Attack against NTRU Signature Implementation and Its Countermeasure (NTRU 서명 시스템 구현에 대한 오류 주입 공격 및 대응 방안 연구)

  • Jang, Hocheol;Oh, Soohyun;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.551-561
    • /
    • 2018
  • As the computational technology using quantum computing has been developed, several threats on cryptographic systems are recently increasing. Therefore, many researches on post-quantum cryptosystems which can withstand the analysis attacks using quantum computers are actively underway. Nevertheless, the lattice-based NTRU system, one of the post-quantum cryptosystems, is pointed out that it may be vulnerable to the fault injection attack which uses the weakness of implementation of NTRU. In this paper, we investigate the fault injection attacks and their previous countermeasures on the NTRU signature system and propose a secure and efficient countermeasure to defeat it. As a simulation result, the proposed countermeasure has high fault detection ratio and low implementation costs.

Efficient Post-Processing for Quantum Communication Systems (양자 통신 시스템의 효율적 후처리 방식)

  • Lee, Sun Yui;Jung, Kuk Hyun;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.7-12
    • /
    • 2014
  • Quantum cryptography is one of the most feasible fields using quantum mechanics. Therefore, quantum cryptography has consistently been researched, and a variety of cryptographic exchange method has been developed, such as BB84, etc. This paper explains a basic concept of quantum communications and quantum key distribution systems using quantum mechanics. Also, it introduces a reason of the development of quantum cryptography and attack scenarios which threaten the security of QKD. Finally, the experiment of this paper simulates quantum key attack by estimating qubit phases through a modeled quantum channel, and discusses needs of post-processing methods for overcoming eavesdropping.

Secure NTRU-based Authentication and Key Distribution Protocol in Quantum Computing Environments (양자 컴퓨팅 환경에 안전한 NTRU 기반 인증 및 키 분배 프로토콜)

  • Jeong, SeongHa;Lee, KyungKeun;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1321-1329
    • /
    • 2017
  • A quantum computer, based on quantum mechanics, is a paradigm of information processing that can show remarkable possibilities of exponentially improved information processing. This paradigm can be solved in a short time by calculating factoring problem and discrete logarithm problem that are typically used in public key cryptosystems such as RSA(Rivest-Shamir-Adleman) and ECC(Elliptic Curve Cryptography). In 2013, Lei et al. proposed a secure NTRU-based key distribution protocol for quantum computing. However, Lei et al. protocol was vulnerable to man-in-the-middle attacks. In this paper, we propose a NTRU(N-the truncated polynomial ring) key distribution protocol with mutual authentication only using NTRU convolution multiplication operation in order to maintain the security for quantum computing. The proposed protocol is resistant to quantum computing attacks. It is also provided a secure key distribution from various attacks such as man-in-the middle attack and replay attack.

Protection Technologies against Large-scale Computing Attacks in Blockchain (블록체인에서 대용량 컴퓨팅 공격 보호 기술)

  • Lee, Hakjun;Won, Dongho;Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.19 no.2
    • /
    • pp.11-19
    • /
    • 2019
  • The blockchain is a technique for managing transaction data in distributed computing manner without the involvement of central trust authority. The blockchain has been used in various area such as manufacturing, culture, and public as well as finance because of its advantage of the security, efficiency and applicability. In the blockchain, it was considered safe against 51% attack because the adversary could not have more than 50% hash power. However, there have been cases caused by large-scale computing attacks such as 51% and selfish mining attack, and the frequency of these attacks is increasing. In addition, since the development of quantum computers can hold exponentially more information than their classical computer, it faces a new type of threat using quantum algorithms. In this paper, we perform the security analysis of blockchain attacks composing the large computing capabilities including quantum computing attacks. Finally, we suggest the technologies and future direction of the blockchain development in order to be safe against large-scale computing attacks.