• 제목/요약/키워드: quantitative trait loci

검색결과 227건 처리시간 0.033초

Quantitative Trait Loci Mapping for Porcine Backfat Thickness

  • Wu, X.L.;Lee, C.;Jiang, J.;Peng, Y.L.;Yan, H.F.;Yang, S.L.;Xiao, B.N.;Liu, X.C.;Shi, Q.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권7호
    • /
    • pp.932-937
    • /
    • 2002
  • A partial genome scan using porcine microsatellites was carried out to detect quantitative trait loci (QTL) for backfat thickness (BFT) in a pig reference population. This population carried QTL on chromosomes 1, 13 and 18. The QTL on chromosome 1 was located between marker loci S0113 and SW1301. The QTL corresponded to very low density lipoprotein receptor gene (VLDLR) in location and in biological effects, suggesting that VLDLR might be a candidate gene. The QTL found on chromosome 13 was found between marker loci SWR1941 and SW864, but significance for the marker-trait association was inconsistent by using data with different generations. The QTL on chromosome 18 was discovered between markers S0062 and S0117, and it was in proximity of the regions where IGFBP3 and GHRHR were located. The porcine obese gene might be also a candidate gene for the QTL on chromosome 18. In order to understand genetic architecture of BFT better, fine mapping and positional comparative candidate gene analyses are necessary.

Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo)

  • Li, Yi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.926-935
    • /
    • 2015
  • The efficiency of genome-wide association analysis (GWAS) depends on power of detection for quantitative trait loci (QTL) and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM), a combined linkage and linkage disequilibrium analysis (LDLA) and a $BayesC{\pi}$ approach. The phenotypes of 486 steers were collected for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area, and marbling score (Marb). Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP) chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA) 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX]) may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.

Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits

  • Kim, E.H.;Choi, B.H.;Kim, K.S.;Lee, C.K.;Cho, B.W.;Kim, T.-H.;Kim, J.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.669-676
    • /
    • 2007
  • This study was conducted to detect quantitative trait loci (QTL) affecting growth and body composition in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 18 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between the models were used to characterize QTL for mode of expressions. A total of 8 (39) QTL were detected at the 5% genome (chromosome)-wise level for the 17 analyzed traits. Of the 47 QTL detected, 21 QTL were classified as Mendelian expressed, 13 QTL as paternally expressed, 6 QTL as maternally expressed, and 7 QTL as partially expressed. Of the detected QTL at 5% genome-wise level, two QTL had Mendelian mode of inheritance on SSC6 and SSC9 for backfat thickness and bone weight, respectively, two QTL were maternally expressed for leather weight and front leg weight on SSC6 and SSC12, respectively, one QTL was paternally expressed for birth weight on SSC4, and three QTL were partially expressed for hot carcass weight and rear leg weight on SSC6, and bone weight on SSC13. Many of the Mendelian QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects that heterosis for growth is appreciable in a cross between Korean native pig and Landrace. Our results indicate that alternate breed alleles of growth and body composition QTL are segregating between the two breeds, which could be utilized for genetic improvement of growth via marker-assisted selection.

Detection of Quantitative Trait Loci Affecting Fat Deposition Traits in Pigs

  • Choi, B.H.;Lee, K.T.;Lee, H.J.;Jang, G.W.;Lee, H.Y.;Cho, B.W.;Han, J.Y.;Kim, T.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권11호
    • /
    • pp.1507-1510
    • /
    • 2012
  • Quantitative trait loci (QTL) associated with fat deposition traits in pigs are important gene positions in a chromosome that influence meat quality of pork. For QTL study, a three generation resource population was constructed from a cross between Korean native boars and Landrace sows. A total of 240 F2 animals from intercross of F1 were produced. 80 microsatellite markers covering chromosomes 1 to 10 were selected to genotype the resource population. Intervals between adjacent markers were approximately 19 cM. Linkage analysis was performed using CRIMAP software version 2.4 with a FIXED option to obtain the map distances. For QTL analysis, the public web-based software, QTL express (http://www.qtl.cap.ed.ac.uk) was used. Two significant and two suggestive QTL were identified on SSC 6, 7, and 8 as affecting body fat and IMF traits. For QTL affecting IMF, the most significant association was detected between marker sw71 and sw1881 on SSC 6, and a suggestive QTL was identified between sw268 and sw205 on SSC8. These QTL accounted for 26.58% and 12.31% of the phenotypic variance, respectively. A significant QTL affecting IMF was detected at position 105 cM between markers sw71 and sw1881 on SSC 6.

Effects of quantitative trait loci determining testicular weight in DDD/Sgn inbred mice are strongly influenced by circulating testosterone levels

  • Suto, Jun-ichi;Kojima, Misaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1826-1835
    • /
    • 2019
  • Objective: Testicular growth and development are strongly influenced by androgen. Although both testis weight and plasma testosterone level are inherited traits, the interrelationship between them is not fully established. Males of DDD/Sgn (DDD) mice are known to have extremely heavy testes and very high plasma testosterone level among inbred mouse strains. We dissected the genetic basis of testis weight and analyzed the potential influence of plasma testosterone level in DDD mice. Methods: Quantitative trait loci (QTL) mapping of testis weight was performed with or without considering the influence of plasma testosterone level in reciprocal $F_2$ intercross populations between DDD and C57BL/6J (B6) mice, thereby assessing the influence of testosterone on the effect of testis weight QTL. Candidate genes for testis weight QTL were investigated by next-generation sequencing analysis. Results: Four significant QTL were identified on chromosomes 1, 8, 14, and 17. The DDDderived allele was associated with increased testis weight. The $F_2$ mice were then divided into two groups according to the plasma testosterone level ($F_2$ mice with relatively "low" and "high" testosterone levels), and QTL scans were again performed. Although QTL on chromosome 1 was shared in both $F_2$ mice, QTL on chromosomes 8 and 17 were identified specifically in $F_2$ mice with relatively high testosterone levels. By whole-exome sequencing analysis, we identified one DDD-specific missense mutation Pro29Ser in alpha tubulin acetyltransferase 1 (Atat1). Conclusion: Most of the testis weight QTL expressed stronger phenotypic effect when they were placed on circumstance with high testosterone level. High testosterone influenced the QTL by enhancing the effect of DDD-derived allele and diminishing the effects of B6-derived allele. Since Pro29Ser was not identified in other inbred mouse strains, and since Pro29 in Atat1 has been strongly conserved among mammalian species, Atat1 is a plausible candidate for testis weight QTL on chromosome 17.

Optimal population size to detect quantitative trait loci in Korean native chicken: a simulation study

  • Nwogwugwu, Chiemela Peter;Kim, Yeongkuk;Cho, Sunghyun;Roh, Hee-Jong;Cha, Jihye;Lee, Seung Hwan;Lee, Jun Heon
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.511-516
    • /
    • 2022
  • Objective: A genomic region associated with a particular phenotype is called quantitative trait loci (QTL). To detect the optimal F2 population size associated with QTLs in native chicken, we performed a simulation study on F2 population derived from crosses between two different breeds. Methods: A total of 15 males and 150 females were randomly selected from the last generation of each F1 population which was composed of different breed to create two different F2 populations. The progenies produced from these selected individuals were simulated for six more generations. Their marker genotypes were simulated with a density of 50K at three different heritability levels for the traits such as 0.1, 0.3, and 0.5. Our study compared 100, 500, 1,000 reference population (RP) groups to each other with three different heritability levels. And a total of 35 QTLs were used, and their locations were randomly created. Results: With a RP size of 100, no QTL was detected to satisfy Bonferroni value at three different heritability levels. In a RP size of 500, two QTLs were detected when the heritability was 0.5. With a RP size of 1,000, 0.1 heritability was detected only one QTL, and 0.5 heritability detected five QTLs. To sum up, RP size and heritability play a key role in detecting QTLs in a QTL study. The larger RP size and greater heritability value, the higher the probability of detection of QTLs. Conclusion: Our study suggests that the use of a large RP and heritability can improve QTL detection in an F2 chicken population.

Mapping of grain alkali digestion trait using a Cheongcheong/Nagdong doubled haploid population in rice

  • Kim, Hak Yoon;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • 제43권1호
    • /
    • pp.76-81
    • /
    • 2016
  • We performed a molecular marker-based analysis of quantitative trait loci for traits that determine the quality of appearance of grains using 120 doubled haploid lines developed by anther culture from the F1 cross between 'Cheongcheong' (Oryza sativa L. ssp. Indica) and 'Nagdong' (Oryza sativa L. ssp. Japonica). We therefore calculated the alkali digestion value (ADV), used to indirectly measure gelatinization temperature, to evaluate the quality of cooked rice in 2013 and 2014. The ADV score of frequency distribution was higher milled rice than brown rice. In total, nine different quantitative trait loci (QTLs) were found on 5 chromosomes in 2013 and 2014. Also, chromosome 5, 8 were detected over two years. We conclude that selected molecular markers from this QTL analysis could be exploited in future rice quality. In conclusion, we investigated ADV of brown and milled rice in CNDH population. This study found nine QTLs related to the ADV of brown and milled rice. The detected one marker can be used to select lines with desirable eating-quality traits because ADV is closely associated with the eating quality of cooked rice. Therefore, it will be useful to collect resources and distinguishable in many varieties for rice breeding program.

Investigation of Splicing Quantitative Trait Loci in Arabidopsis thaliana

  • Yoo, Wonseok;Kyung, Sungkyu;Han, Seonggyun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.211-215
    • /
    • 2016
  • The alteration of alternative splicing patterns has an effect on the quantification of functional proteins, leading to phenotype variation. The splicing quantitative trait locus (sQTL) is one of the main genetic elements affecting splicing patterns. Here, we report the results of genome-wide sQTLs across 141 strains of Arabidopsis thaliana with publicly available next generation sequencing datasets. As a result, we found 1,694 candidate sQTLs in Arabidopsis thaliana at a false discovery rate of 0.01. Furthermore, among the candidate sQTLs, we found 25 sQTLs that overlapped with the list of previously examined trait-associated single nucleotide polymorphisms (SNPs). In summary, this sQTL analysis provides new insight into genetic elements affecting alternative splicing patterns in Arabidopsis thaliana and the mechanism of previously reported trait-associated SNPs.

돼지 염색체상의 IGF II 유전자 인접 부위에서 번식 및 성장형질에 연관된 Imprinting 양적형질 유전자 좌위(QTL)의 탐색 (Detection of Imprinted Quantitative Traits Loci (QTL) for Reproductive and Growth Traits in Region of IGF II Gene on fig Chromosome)

  • Lee, Hakkyo
    • 한국가축번식학회지
    • /
    • 제25권4호
    • /
    • pp.295-304
    • /
    • 2001
  • 양적형질 유전자 좌위 (QTL)의 탐색과 이들의 발현 양상 규명을 위해 Berkshire종과 Yorkshire종 간의 교배를 통해 생산된 F$_2$ 실험집단에서 regression interval mapping이 이루어졌다. 모두 525마리의 F$_2$ 자손들에서 일당 증체량, 평균 등지방 두께, 배장근 단면적이 표현형으로 조사되어 분석에 이용되었으며 모돈의 번식능력에 관련된 QTL 존재 여부 추정을 위해 간접 형질로 인정되고 있는 생시체중과 이유 시 체중을 분석에 포함하였다. 양적형질의 분리 여부를 추론하기 위하여 돼지의 2번 염색체에서 8종의 microsatellite 표지인자가 선택되어 유전자형이 조사되었다. 각각의 유전적 모델에서 산출된 통계량으로부터 QTL 존재 여부와 특정 QTL 발현 양상에 대한 여부를 나타낼 수 있는 인정되는 수준의 type I 오차율을 제어할 수 있는 임계값 (threshold)을 permutation test에 의해 제시하였다. QTL의 존재와 그 QTL의 Imprinting 여부는 부계와 모계를 통해 원가계 1세대의 대립유전자가 전달되는 과정에서 발현되는 특성을 분리시키는 통계적 의형을 설정하여 검정 통계량을 산출하였다. 분석에 이용된 3가지 형질과 연관된 3종류의 QTL 존재 가능성을 돼지의 2번 염색체에서 확인하였으며, 이들 중 평균 등지방 두께와 배장근 단면적에 각각 영향을 미칠 것으로 추론된 2종류의 QTL 발현은 정상적인 Mendelian 유전양식을 따르지 않고 imprinting된다는 증거를 얻어냈다. 또한 이들 imprinting되는 QTL은 이미 imprinting 표현 양식을 가진다고 알려진 IGF II 유전자의 위치와 거의 동일한 염색체강의 지점에서 부계로 전달되는 QTL만이 발현되는 특징을 보이는 것으로 밝혀졌다. 한편 Mendelian 모형과 imprinting 모형 모두에서 유의적인 임계값 이상을 보이는 검정 통계량이 산출된 일당 증체량 연관 QTL은 두 모형간의 적정성 분석을 위한 검정을 퐁해 Mendelian 양식을 따른 것으로 최종 확인되었다.

  • PDF

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.