• 제목/요약/키워드: quantitative trait loci

검색결과 227건 처리시간 0.028초

Animal Breeding: What Does the Future Hold?

  • Eisen, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권3호
    • /
    • pp.453-460
    • /
    • 2007
  • An overview of developments important in the future of animal breeding is discussed. Examples from the application of quantitative genetic principles to selection in chickens and mice are given. Lessons to be learned from these species are that selection for production traits in livestock must also consider selection for reproduction and other fitness-related traits and inbreeding should be minimized. Short-term selection benefits of best linear unbiased predictor methodology must be weighed against long-term risks of increased rate of inbreeding. Different options have been developed to minimize inbreeding rates while maximizing selection response. Development of molecular genetic methods to search for quantitative trait loci provides the opportunity for incorporating marker-assisted selection and introgression as new tools for increasing efficiency of genetic improvement. Theoretical and computer simulation studies indicate that these methods hold great promise once genotyping costs are reduced to make the technology economically feasible. Cloning and transgenesis are not likely to contribute significantly to genetic improvement of livestock production in the near future.

Genetic Architecture of Transcription and Chromatin Regulation

  • Kim, Kwoneel;Bang, Hyoeun;Lee, Kibaick;Choi, Jung Kyoon
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.40-44
    • /
    • 2015
  • DNA microarray and next-generation sequencing provide data that can be used for the genetic analysis of multiple quantitative traits such as gene expression levels, transcription factor binding profiles, and epigenetic signatures. In particular, chromatin opening is tightly coupled with gene transcription. To understand how these two processes are genetically regulated and associated with each other, we examined the changes of chromatin accessibility and gene expression in response to genetic variation by means of quantitative trait loci mapping. Regulatory patterns commonly observed in yeast and human across different technical platforms and experimental designs suggest a higher genetic complexity of transcription regulation in contrast to a more robust genetic architecture of chromatin regulation.

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E.;Iqbal, A.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권10호
    • /
    • pp.1406-1410
    • /
    • 2014
  • Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Methodology of Mapping Quantitative Trait Loci for Binary Traits in a Half-sib Design Using Maximum Likelihood

  • Yin, Zongjun;Zhang, Qin;Zhang, Jigang;Ding, Xiangdong;Wang, Chunkao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권12호
    • /
    • pp.1669-1674
    • /
    • 2005
  • Maximum likelihood methodology was applied to analyze the efficiency and statistical power of interval mapping by using a threshold model. The factors that affect QTL detection efficiency (e.g. QTL effect, heritability and incidence of categories) were simulated in our study. Daughter design with multiple families was applied, and the size of segregating population is 500. The results showed that the threshold model has a great advantage in parameters estimation and power of QTL mapping, and has nice efficiency and accuracy for discrete traits. In addition, the accuracy and power of QTL mapping depended on the effect of putative quantitative trait loci, the value of heritability and incidence directly. With the increase of QTL effect, heritability and incidence of categories, the accuracy and power of QTL mapping improved correspondingly.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.

A Major DNA marker Mining of ILST035 microsatellite loci in Hanwoo Chromosome 6

  • 이제영;여정수;김재우;이용원
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.97-104
    • /
    • 2002
  • K-Means modelling has been tried for finding major DNA marker of ILST035 microsatellite loci in Hanwoo Chromosome 6 linkage map. Major DNA markers are obtained from the ILST035 microsatellite through quantitative trait loci(QTL) and data mining modelling.

  • PDF

A Major DNA Marker Mining of microsatellite loci in Hanwoo Chromosome 17

  • 이용원;이제영
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 춘계학술대회
    • /
    • pp.54-58
    • /
    • 2005
  • 한우 17번 염색체 유전자 지도에서 QTL (quantitative trait loci) 분석을 실시하여 선별된 Loci 값들을 순열검정(Permutation Test)을 이용하여 유의성 검정을 실시하였다. 한편, 우수 경제형질 DNA marker들을 K-평균 군집법을 실시 파악하였다. 또한, 부스트랩 방법을 이용하여 선별된 Locus의 DNA Marker들의 신뢰구간을 구하였다. 이들 QTL과 K-평균법, 부스트랩 방법에 의해 한우의 염색체 17번 BMS941의 우수 DNA Marker 85, 105번을 선별하였다.

  • PDF

Directed Causal Network Construction Using Linkage Analysis with Metabolic Syndrome-Related Expression Quantitative Traits

  • Kim, Kyee-Zu;Min, Jin-Young;Kwon, Geun-Yong;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.143-151
    • /
    • 2011
  • In this study, we propose a novel, intuitive method of constructing an expression quantitative trait (eQT) network that is related to the metabolic syndrome using LOD scores and peak loci for selected eQTs, based on the concept of gene-gene interactions. We selected 49 eQTs that were related to insulin resistance. A variance component linkage analysis was performed to explore the expression loci of each of the eQTs. The linkage peak loci were investigated, and the "support zone" was defined within boundaries of an LOD score of 0.5 from the peak. If one gene was located within the "support zone" of the peak loci for the eQT of another gene, the relationship was considered as a potential "directed causal pathway" from the former to the latter gene. SNP markers under the linkage peaks or within the support zone were searched for in the database to identify the genes at the loci. Two groups of gene networks were formed separately around the genes IRS2 and UGCGL2. The findings indicated evidence of networks between genes that were related to the metabolic syndrome. The use of linkage analysis enabled the construction of directed causal networks. This methodology showed that characterizing and locating eQTs can provide an effective means of constructing a genetic network.

Genome-Wide Association Study of Metabolic Syndrome in Koreans

  • Jeong, Seok Won;Chung, Myungguen;Park, Soo-Jung;Cho, Seong Beom;Hong, Kyung-Won
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.187-194
    • /
    • 2014
  • Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (< $5{\times}10^{-8}$), 8 SNPs with genome-wide suggestive p-values ($5{\times}10^{-8}{\leq}$ p < $1{\times}10^{-5}$), and 2 SNPs of more functional variants with borderline p-values ($5{\times}10^{-5}{\leq}$ p < $1{\times}10^{-4}$). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.