DOI QR코드

DOI QR Code

Genome-Wide Association Study of Metabolic Syndrome in Koreans

  • Jeong, Seok Won (Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, KCDC) ;
  • Chung, Myungguen (Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, KCDC) ;
  • Park, Soo-Jung (Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, KCDC) ;
  • Cho, Seong Beom (Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, KCDC) ;
  • Hong, Kyung-Won (Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, KCDC)
  • Received : 2014.07.08
  • Accepted : 2014.09.29
  • Published : 2014.12.31

Abstract

Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (< $5{\times}10^{-8}$), 8 SNPs with genome-wide suggestive p-values ($5{\times}10^{-8}{\leq}$ p < $1{\times}10^{-5}$), and 2 SNPs of more functional variants with borderline p-values ($5{\times}10^{-5}{\leq}$ p < $1{\times}10^{-4}$). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.

Keywords

References

  1. Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome: a new worldwide definition. Lancet 2005;366:1059-1062. https://doi.org/10.1016/S0140-6736(05)67402-8
  2. Haffner S, Taegtmeyer H. Epidemic obesity and the metabolic syndrome. Circulation 2003;108:1541-1545. https://doi.org/10.1161/01.CIR.0000088845.17586.EC
  3. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004;33:351-375. https://doi.org/10.1016/j.ecl.2004.03.005
  4. Song J, Kim E, Shin C, Kim SS, Lee HK, Jung M, et al. Prevalence of the metabolic syndrome among South Korean adults: the Ansan study. Diabet Med 2004;21:1154-1155. https://doi.org/10.1111/j.1464-5491.2004.01399.x
  5. Sung J, Lee K, Song YM. Heritabilities of the metabolic syndrome phenotypes and related factors in Korean twins. J Clin Endocrinol Metab 2009;94:4946-4952. https://doi.org/10.1210/jc.2009-1268
  6. Pennisi E. Breakthrough of the year. Human genetic variation. Science 2007;318:1842-1843. https://doi.org/10.1126/science.318.5858.1842
  7. Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 2011;5:577-622. https://doi.org/10.1186/1479-7364-5-6-577
  8. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 2011;43:990-995. https://doi.org/10.1038/ng.939
  9. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-450. https://doi.org/10.1038/nrg2809
  10. Fransen K, Visschedijk MC, van Sommeren S, Fu JY, Franke L, Festen EA, et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn's disease. Hum Mol Genet 2010;19:3482-3488. https://doi.org/10.1093/hmg/ddq264
  11. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010;42:565-569. https://doi.org/10.1038/ng.608
  12. Ko KP, Min H, Ahn Y, Park SJ, Kim CS, Park JK, et al. A prospective study investigating the association between environmental tobacco smoke exposure and the incidence of type 2 diabetes in never smokers. Ann Epidemiol 2011;21:42-47. https://doi.org/10.1016/j.annepidem.2010.10.006
  13. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-534. https://doi.org/10.1038/ng.357
  14. Ahn Y, Park SJ, Kwack HK, Kim MK, Ko KP, Kim SS. Rice-eating pattern and the risk of metabolic syndrome especially waist circumference in Korean Genome and Epidemiology Study (KoGES). BMC Public Health 2013;13:61. https://doi.org/10.1186/1471-2458-13-61
  15. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-3421.
  16. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
  17. Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2006;22:7-12. https://doi.org/10.1093/bioinformatics/bti741
  18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-575. https://doi.org/10.1086/519795
  19. Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio: the analysis and navigation of molecular networks. Bioinformatics 2003;19:2155-2157. https://doi.org/10.1093/bioinformatics/btg290
  20. Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 2008;82:139-149. https://doi.org/10.1016/j.ajhg.2007.11.001
  21. Heid IM, Boes E, Muller M, Kollerits B, Lamina C, Coassin S, et al. Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. Circ Cardiovasc Genet 2008;1:10-20. https://doi.org/10.1161/CIRCGENETICS.108.776708
  22. Liang L, Morar N, Dixon AL, Lathrop GM, Abecasis GR, Moffatt MF, et al. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res 2013;23:716-726. https://doi.org/10.1101/gr.142521.112
  23. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011;60:1329-1339. https://doi.org/10.2337/db10-1011
  24. Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, Warnes GR, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 2008;40:149-151. https://doi.org/10.1038/ng.2007.61
  25. Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One 2012;7:e51954. https://doi.org/10.1371/journal.pone.0051954
  26. Tan A, Sun J, Xia N, Qin X, Hu Y, Zhang S, et al. A genome-wide association and gene-environment interaction study for serum triglycerides levels in a healthy Chinese male population. Hum Mol Genet 2012;21:1658-1664. https://doi.org/10.1093/hmg/ddr587
  27. Coram MA, Duan Q, Hoffmann TJ, Thornton T, Knowles JW, Johnson NA, et al. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am J Hum Genet 2013;92:904-916. https://doi.org/10.1016/j.ajhg.2013.04.025
  28. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 2009;41:35-46. https://doi.org/10.1038/ng.271
  29. Chasman DI, Pare G, Mora S, Hopewell JC, Peloso G, Clarke R, et al. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet 2009;5:e1000730. https://doi.org/10.1371/journal.pgen.1000730
  30. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010;466:707-713. https://doi.org/10.1038/nature09270
  31. Middelberg RP, Ferreira MA, Henders AK, Heath AC, Madden PA, Montgomery GW, et al. Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Med Genet 2011;12:123. https://doi.org/10.1186/1471-2350-12-123
  32. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008;40:189-197. https://doi.org/10.1038/ng.75
  33. Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, Ban MR, et al. Excess of rare variants in genes identified by genome- wide association study of hypertriglyceridemia. Nat Genet 2010;42:684-687. https://doi.org/10.1038/ng.628
  34. Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS, et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 2012;5:242-249. https://doi.org/10.1161/CIRCGENETICS.111.961482
  35. Weissglas-Volkov D, Aguilar-Salinas CA, Nikkola E, Deere KA, Cruz-Bautista I, Arellano-Campos O, et al. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci. J Med Genet 2013;50:298-308. https://doi.org/10.1136/jmedgenet-2012-101461
  36. Nair RR, Solway J, Boyd DD. Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem 2006;281:26424-26436. https://doi.org/10.1074/jbc.M602703200
  37. Assinder SJ, Stanton JA, Prasad PD. Transgelin: an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol 2009;41:482-486. https://doi.org/10.1016/j.biocel.2008.02.011
  38. Takai S, Jin D, Miyazaki M. Chymase as an important target for preventing complications of metabolic syndrome. Curr Med Chem 2010;17:3223-3229. https://doi.org/10.2174/092986710792232003
  39. Cicero AF, Derosa G, Manca M, Bove M, Borghi C, Gaddi AV. Vascular remodeling and prothrombotic markers in subjects affected by familial combined hyperlipidemia and/or metabolic syndrome in primary prevention for cardiovascular disease. Endothelium 2007;14:193-198. https://doi.org/10.1080/10623320701606731
  40. Ranjith N, Pegoraro RJ, Rom L. Lipid profiles and associated gene polymorphisms in young Asian Indian patients with acute myocardial infarction and the metabolic syndrome. Metab Syndr Relat Disord 2009;7:571-578. https://doi.org/10.1089/met.2009.0015
  41. Deo RC, Reich D, Tandon A, Akylbekova E, Patterson N, Waliszewska A, et al. Genetic differences between the determinants of lipid profile phenotypes in African and European Americans: the Jackson Heart Study. PLoS Genet 2009;5:e1000342. https://doi.org/10.1371/journal.pgen.1000342
  42. Sattler W, Levak-Frank S, Radner H, Kostner GM, Zechner R. Muscle-specific overexpression of lipoprotein lipase in transgenic mice results in increased alpha-tocopherol levels in skeletal muscle. Biochem J 1996;318(Pt 1):15-19. https://doi.org/10.1042/bj3180015
  43. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al. Genetics and beyond: the transcriptome of human monocytes and disease susceptibility. PLoS One 2010;5:e10693. https://doi.org/10.1371/journal.pone.0010693
  44. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 2010;6:e1000952. https://doi.org/10.1371/journal.pgen.1000952
  45. Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, et al. High-resolution mapping of expression- QTLs yields insight into human gene regulation. PLoS Genet 2008;4:e1000214. https://doi.org/10.1371/journal.pgen.1000214
  46. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 2010;464:773-777. https://doi.org/10.1038/nature08903
  47. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008;6:e107. https://doi.org/10.1371/journal.pbio.0060107

Cited by

  1. The Association of Type 2 Diabetes Loci Identified in Genome-Wide Association Studies with Metabolic Syndrome and Its Components in a Chinese Population with Type 2 Diabetes vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0143607
  2. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis) vol.36, pp.3, 2015, https://doi.org/10.3892/ijmm.2015.2285
  3. Let-7 related genetic variation and risk of metabolic syndrome in a Chinese population vol.62, pp.10, 2015, https://doi.org/10.1507/endocrj.EJ15-0236
  4. Genetics of Insulin Resistance and the Metabolic Syndrome vol.18, pp.8, 2016, https://doi.org/10.1007/s11886-016-0755-4
  5. Susceptibility loci for metabolic syndrome and metabolic components identified in Han Chinese: a multi-stage genome-wide association study vol.21, pp.6, 2017, https://doi.org/10.1111/jcmm.13042
  6. Dietary Patterns and Risk for Metabolic Syndrome in Korean Women vol.94, pp.34, 2015, https://doi.org/10.1097/MD.0000000000001424
  7. Exome Sequencing Identifies Genetic Variants Associated with Circulating Lipid Levels in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study (IRASFS) vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23727-2