• 제목/요약/키워드: quantitative microtomography

검색결과 7건 처리시간 0.025초

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권1호
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Spiral scanning imaging and quantitative calculation of the 3-dimensional screw-shaped bone-implant interface on micro-computed tomography

  • Choi, Jung-Yoo Chesaria;Choi, Cham Albert;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • 제48권4호
    • /
    • pp.202-212
    • /
    • 2018
  • Purpose: Bone-to-implant contact (BIC) is difficult to measure on micro-computed tomography (CT) because of artifacts that hinder accurate differentiation of the bone and implant. This study presents an advanced algorithm for measuring BIC in micro-CT acquisitions using a spiral scanning technique, with improved differentiation of bone and implant materials. Methods: Five sandblasted, large-grit, acid-etched implants were used. Three implants were subjected to surface analysis, and 2 were inserted into a New Zealand white rabbit, with each tibia receiving 1 implant. The rabbit was sacrificed after 28 days. The en bloc specimens were subjected to spiral (SkyScan 1275, Bruker) and round (SkyScan 1172, SkyScan 1275) micro-CT scanning to evaluate differences in the images resulting from the different scanning techniques. The partial volume effect (PVE) was optimized as much as possible. BIC was measured with both round and spiral scanning on the SkyScan 1275, and the results were compared. Results: Compared with the round micro-CT scanning, the spiral scanning showed much clearer images. In addition, the PVE was optimized, which allowed accurate BIC measurements to be made. Round scanning on the SkyScan 1275 resulted in higher BIC measurements than spiral scanning on the same machine; however, the higher measurements on round scanning were confirmed to be false, and were found to be the result of artifacts in the void, rather than bone. Conclusions: The results of this study indicate that spiral scanning can reduce metal artifacts, thereby allowing clear differentiation of bone and implant. Moreover, the PVE, which is a factor that inevitably hinders accurate BIC measurements, was optimized through an advanced algorithm.

Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: A comparative micro-CT study

  • Tayman, Mahmure Ayse;Kamburoglu, Kivanc;Ocak, Mert;Ozen, Dogukan
    • Imaging Science in Dentistry
    • /
    • 제52권2호
    • /
    • pp.171-179
    • /
    • 2022
  • Purpose: The aim of this study was to assess the accuracy of cone-beam computed tomographic (CBCT) images obtained using different voxel sizes in measuring trabecular bone microstructure in comparison to micro-CT. Materials and Methods: Twelve human skull bones containing posterior-mandibular alveolar bone regions were analyzed. CBCT images were obtained at voxel sizes of 0.075mm(high: HI) and 0.2mm(standard: Std), while microCT imaging used voxel sizes of 0.06 mm (HI) and 0.12 mm (Std). Analyses were performed using CTAn software with the standardized automatic global threshold method. Intraclass correlation coefficients were used to evaluate the consistency and agreement of paired measurements for bone volume (BV), percent bone volume (BV/TV), bone surface (BS), trabecular thickness (TbTh), trabecular separation (TbSp), trabecular number (TbN), trabecular pattern factor(TbPf), and structure model index (SMI). Results: When compared to micro-CT, CBCT images had higher BV, BV/TV, and TbTh values, while micro-CT images had lower BS, TbSp, TbN, TbPf, and SMI values (P<0.05). The BV, BV/BT, TbTh, and TbSp variables were higher with Std voxels, whereas the BS, TbPf, and SMI variables were higher with HI voxels for both imaging methods. For each imaging modality and voxel size evaluated, BV, BS, and TbTh were significantly different(P<0.05). TbN, TbPf, and SMI showed statistically significant differences between imaging methods(P<0.05). The consistency and absolute agreement between micro-CT and CBCT were excellent for all variables. Conclusion: This study demonstrated the potential of high-resolution CBCT imaging for quantitative bone morphometry assessment.

CBCT-based assessment of root canal treatment using micro-CT reference images

  • Lamira, Alessando;Mazzi-Chaves, Jardel Francisco;Nicolielo, Laura Ferreira Pinheiro;Leoni, Graziela Bianchi;Silva-Sousa, Alice Correa;Silva-Sousa, Yara Terezinha Correa;Pauwels, Ruben;Buls, Nico;Jacobs, Reinhilde;Sousa-Neto, Manoel Damiao
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.245-258
    • /
    • 2022
  • Purpose: This study compared the root canal anatomy between cone-beam computed tomography (CBCT) and micro-computed tomography (micro-CT) images before and after biomechanical preparation and root canal filling. Materials and Methods: Isthmus-containing mesial roots of mandibular molars(n=14) were scanned by micro-CT and 3 CBCT devices: 3D Accuitomo 170 (ACC), NewTom 5G (N5G) and NewTom VGi evo (NEVO). Two calibrated observers evaluated the images for 2-dimensional quantitative parameters, the presence of debris or root perforation, and filling quality in the root canal and isthmus. The kappa coefficient, analysis of variance, and the Tukey test were used for statistical analyses(α=5%). Results: Substantial intra-observer agreement (κ=0.63) was found between micro-CT and ACC, N5G, and NEVO. Debris detection was difficult using ACC (42.9%), N5G (40.0%), and NEVO (40%), with no agreement between micro-CT and ACC, N5G, and NEVO (0.05<κ<0.12). After biomechanical preparation, 2.4%-4.8% of CBCT images showed root perforation that was absent on micro-CT. The 2D parameters showed satisfactory reproducibility between micro-CT and ACC, N5G, and NEVO (intraclass correlation coefficient: 0.60-0.73). Partially filled isthmuses were observed in 2.9% of the ACC images, 8.8% of the N5G and NEVO images, and 26.5% of the micro-CT images, with no agreement between micro-CT and ACC, and poor agreement between micro-CT and N5G and NEVO. Excellent agreement was found for area, perimeter, and the major and minor diameters, while the roundness measures were satisfactory. Conclusion: CBCT images aided in isthmus detection and classification, but did not allow their classification after biomechanical preparation and root canal filling.

Micro-CT를 이용한 복합 레진 수복물 미세 누출도의 정량 분석 (Quantitative Micro-CT Evaluation of Microleakage in Composite Resin Restorations)

  • 이상익;현홍근;김영재;김정욱;이상훈;김종철;한세현;장기택
    • 대한소아치과학회지
    • /
    • 제34권2호
    • /
    • pp.222-233
    • /
    • 2007
  • 치과 수복 재료 검사 시 가장 중요하고 기본적인 것은 치아와 수복물 사이의 미세누출에 대한 평가이다. 미세 누출을 평가하는 방법은 여러 가지가 있지만 이들 대부분은 많은 단점들을 가지고 있다. 최근에 개발된 미세 단층촬영법(micro-CT)을 이용하면 시편을 비파괴적으로 처리하여 특정 밀도에 해당하는 부분의 3차원적 영상을 얻을 수 있으므로, 이를 이용하면 정확하고 정량적인 미세누출 평가도 가능할 것이다. 이 연구의 목적은 micro-CT를 사용하여, 레진 수복물의 미세 누출도를 정량적이고 비파괴적으로 측정할 수 있는 새로운 방법을 찾아내고, 이 새로운 방법을 기존의 색소 침투법과 비교해보는 것이다. 이를 위해, 위의 두 가지 방법을 사용하여 두 종류의 상아질 접착 시스템의 미세누출도가 평가되었다. 사람의 건전 소구치 40개를 임의로 20개씩 두 군으로 나누고 다음과 같이 처리하였다. Group 1 : $Adper^{TM}$ Singe Bond 사용 후 제 V급 와동 레진 수복, Gourp 2 : $Adper^{TM}\;Promp^{TM}$ L-pop 사용 후 제 V급 와동 레진 수복 모든 치아의 5급 와동은 $Filtek^{TM}$ Supreme으로 수복하였다. 그 후 각 군 중 10개의 치아는 micro-CT를 사용하여 미세 누출도를 평가하고, 나머지 10개는 기존의 색소 침투법으로 평가하였다. 이 연구의 결과는 다음과 같았다. 1. Micro-CT를 사용한 경우, 1군은 2군보다 통계적으로 유의성 있게 적은 양의 미세 누출을 보였다(p<0.01). 2. 기존의 색소 침투법을 사용한 경우에서 1군은 2군보다 적은 미세누출을 보였으며 이는 통계적으로 유의성이 있었다. (p<0.01). 3. 두 군간의 미세 누출도는 micro-CT를 사용한 방법에서 더 현저한 차이를 보였다. 4. 두 가지 방법 모두에서 법랑질 변연 부분보다 상아질 변연 부분에서 더 많은 미세 누출을 보였다.

  • PDF