• Title/Summary/Keyword: quantitative inspections

Search Result 25, Processing Time 0.033 seconds

Development of An Evaluation System for the Interim Check of Integrated Rural Village Development Project (농촌마을종합개발사업 중간 점검을 위한 평가지표 적용사례)

  • Han, Kyung-Soo;Kim, Ki-Hyun;Jun, Teak-Ki;Um, Dae-Ho;Choi, Youn-Sang
    • Journal of Korean Society of Rural Planning
    • /
    • v.13 no.2
    • /
    • pp.121-132
    • /
    • 2007
  • In this study, We developed an evaluation system for the interim check of Integrated Rural Village Development Project and analyzed its applicability to an actual evaluation process through a pilot evaluation on regions selected. The evaluation system consists of documentary assessments(30%) and field inspections(70%). The documentary assessments are quantitative assessments on check-lists reports by self-evaluation prepared by local governments. The field inspections are qualitative assessments by evaluation teams. Sixteen evaluation indices were developed for documentary assessments and seven criteria were designed for field inspections. For a pilot evaluation, one region in each province excluding Jeju Do, eight regions was selected and the field inspections due to circumstances was proceeded in two regions. The results of documentary assessments indicate that most of regions are evaluated low in project performance attributable to the delay in security for sites. In the field inspections, it appears that most of the regions evaluated high at the documentary assessments got a high point from them. They also show that coordination of action plans, rather than quantitative achievements, is a base determining success of the projects.

The Analysis on the Effects of the Failure Reduction Strategies of the Railway Facilities (도시철도 시설물 장애감소 전략과 효과 분석- 서울도시철도공사를 중심으로 -)

  • Yun, Seong-Chan;Park, Jong-Hun;Kim, Sung-Chun;Eum, Sung-Jik
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.608-616
    • /
    • 2010
  • Seoul Metropolitan Rapid Transit Corporation, managing the line number 5,6,7 and 8 has inspected and maintained for the maintenance of the facilities spread in the extended 152km and 148 stations. Despite the thorough inspection for prevention of the facility failure, the failure has continuously occurred, due to the environmental factors of the underground, mechanical worn-out caused by frequent use, aging facilities, system error, negligence on use, etc. We have achieved a 53.4% reduction in the number of failure by the end of June, 2010 by breaking the conventional way of inspections and maintenance and by adopting quantitative goal management and new way of work. In this paper, we will analyze the problems of inspections and maintenance of the railway facilities, the failure reduction strategy and the performance of each strategy.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

Quantitative Effectiveness Analysis of Vehicle Inspection (자동차검사제도의 정량적 효과분석)

  • Jo, Han-Seon;Sim, Jae-Ik;Kim, Jong-Ryong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.65-74
    • /
    • 2007
  • Vehicle inspection is a system to help all vehicles function safely through periodic maintenance. Vehicle inspections have been performed since 1962 in Korea by the government in order to reduce traffic accidents due to vehicle defects. Also, vehicle inspections may help protect citizens against uninsured vehicles and illegal vehicle remodeling by discovering and disclosing those vehicles. The prime objective of vehicle inspection is to guarantee all vehicles drive safely on the road by inspecting and fixing items which can affect traffic accidents. In addition, vehicle inspections may help to improve the public order related to vehicle operations and prevent crime through the confirmation of vehicle identity and authentication of ownership. Although there are many benefits of vehicle inspection. there are some negative opinions of the system. In this study, a methodology to analyze the effectiveness of the vehicle inspection system quantitatively in terms of traffic safety was developed. According to the developed methodology. accidents were reduced by 23.735, which is 11% of the total number of accidents in 2005.

Sex differences in QEEG in adolescents with conduct disorder and psychopathic traits

  • Calzada-Reyes, Ana;Alvarez-Amador, Alfredo;Galan-Garcia, Lidice;Valdes-Sosa, Mitchell
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.1
    • /
    • pp.16-29
    • /
    • 2019
  • Background: Sex influences is important to understand behavioral manifestations in a large number of neuropsychiatric disorders. We found electrophysiological differences specifically related to the influence of sex on psychopathic traits. Methods: The resting electroencephalography (EEG) activity and low-resolution brain electromagnetic tomography (LORETA) for the EEG spectral bands were evaluated in 38 teenagers with conduct disorder (CD). The 25 male and 13 female subjects had psychopathic traits as diagnosed using the Antisocial Process Screening Device. All of the included adolescents were assessed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) criteria. The visually inspected EEG characteristics and the use of frequency-domain quantitative analysis techniques are described. Results: Quantitative EEG (QEEG) analysis showed that the slow-wave activities in the right frontal and left central regions were higher and the alpha-band powers in the left central and bitemporal regions were lower in the male than the female psychopathic traits group. The current source density showed increases in paralimbic areas at 2.73 Hz and decreases in the frontoparietal area at 9.37 Hz in male psychopathics relative to female psychopathics. Conclusions: These findings indicate that QEEG analysis and techniques of source localization can reveal sex differences in brain electrical activity between teenagers with CD and psychopathic traits that are not obvious in visual inspections.

Safety Assessment of Ship Navigation at Yeocheon Harbor for 320,000DWT VLCC (여천항에서의 32만 DWT급 원유 운반선의 선박운항 안전성 평가)

  • 공인영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.S1
    • /
    • pp.55-73
    • /
    • 1997
  • It is well known that simulation study in the preliminary design stage of harbors or berths is of great use, since it can provide helpful informations to the designer from the view point of ship navigations. In this paper, a brief review is made in the safety assessment of ship navigation for a 320,000 DWT VLCC entering Yecocheon harbor area, which is carried out by shiphandling simulator system. The geographic data base for the harbor as well as the mathematical models of the ship and environmental effects are designed and developed. Based in the on-site inspections and interviews with pilots in Yeocheon area, basic maneuvering plans and consistence with real operation conditions. Berthing and deberthing maneuvering simulations as well as approaching and departing simulations are carried out by 3 experienced navigators according to the maneuvering plans and environmental scenarios. The simulation results are analysed in various ways to evaluate the quantitative and qualitative maneuvering difficulties and thereby to assess the safety of ship navigation in that area.

  • PDF

A Study on the manufacturing process using the sensitivity analysis of stochastic network (감도분석에 의한 제조공정연구)

  • 박기주
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.63
    • /
    • pp.65-77
    • /
    • 2001
  • A more technical perspective is needed in estimating the effect of the Manufacturing Process for improving the Productivity, there are many statistical evaluation methods, convenience sampling, frequencies, histogram, QC seven tools, control chart etc. It is more important for the companies to use six sigma to reduce defective and improve the process control than the technical definition as a disciplined quantitative approach for improvement of process control and a new way of quality innovation. Process network analysis is a technique which has the potentiality for a wide use to improve the manufacturing process which other techniques can't be used to analyze effectively. It has some problems to analyze the process with feedback loops. The branch probabilities during quality inspections depend upon the number of times the product has been rejected. This paper presents how to improve the manufacturing process by statistical process control using branch probabilities, Moment Generating Function(MGF) and Sensitivity Equation.

  • PDF

Automatic wall slant angle map generation using 3D point clouds

  • Kim, Jeongyun;Yun, Seungsang;Jung, Minwoo;Kim, Ayoung;Cho, Younggun
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • Recently, quantitative and repetitive inspections of the old urban area were conducted because many structures exceed their designed lifetime. The health of a building can be validated from the condition of the outer wall, while the slant angle of the wall widely serves as an indicator of urban regeneration projects. Mostly, the inspector directly measures the inclination of the wall or partially uses 3D point measurements using a static light detection and ranging (LiDAR). These approaches are costly, time-consuming, and only limited space can be measured. Therefore, we propose a mobile mapping system and automatic slant map generation algorithm, configured to capture urban environments online. Additionally, we use the LiDAR-inertial mapping algorithm to construct raw point clouds with gravity information. The proposed method extracts walls from raw point clouds and measures the slant angle of walls accurately. The generated slant angle map is evaluated in indoor and outdoor environments, and the accuracy is compared with real tiltmeter measurements.

Techniques for Evaluation of LAMP Amplicons and their Applications in Molecular Biology

  • Esmatabadi, Mohammad javad Dehghan;Bozorgmehr, Ali;zadeh, Hesam Motaleb;Bodaghabadi, Narges;Farhangi, Baharak;Babashah, Sadegh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7409-7414
    • /
    • 2015
  • Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible.

A Study on the Quantitative Risk Assessment of Hydrogen-LPG Combined Refueling Station (수소-LPG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung Kyu
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a quantitative risk assessment was carried out for a hydrogen complex station. The complex fueling station to be evaluated was hydrogen-LPG, and the components of each station were analyzed and the risk was evaluated. The final risk is assessed by individual and societal risks, taking into account the impact of damage and the frequency of accidents. As a result of individual risk calculation for the hydrogen-LPG fueling station that is the subject of this study, the hydrogen-LPG type fueling station does not show the unacceptable hazardous area (> 1 × 10E-3) proposed by HSE. The level of individual risk for both the public and the worker is within acceptable limits. In societal risk assessment, the model to be interpreted shows the distribution of risks in an acceptable range(ALARP, As Low As Reasonably Practicable). To ensure improved safety, we recommend regular inspections and checks for high-risk hydrogen reservoirs, dispensers, tube trailer leaks, and LPG vapor recovery lines.