• Title/Summary/Keyword: quantitative image analysis

Search Result 756, Processing Time 0.025 seconds

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.

Quantitative Assessment of 3D Reconstruction Procedure Using Stereo Matching (스테레오 정합을 이용한 3차원 재구성 과정의 정량적 평가)

  • Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • The quantitative evaluation of DEM(Digital Elevation Map) is very important to the assessment of the effectiveness for the applied 3D image analysis technique. This paper presents a new quantitative evaluation method of 3D reconstruction process by using synthetic images. The proposed method is based on the assumption that a preacquired DEM and ortho-image should be the pseudo ground truth. The proposed evaluation process begins by generating a pair of photo-realistic synthetic images of the terrain from any viewpoint in terms of application of the constructed ray tracing algorithm to the pseudo ground truth. By comparing the DEM obtained by a pair of photo-realistic synthetic images with the assumed pseudo ground truth, we can analyze the quantitative error in DEM and evaluate the effectiveness of the applied 3D analysis method. To verify the effectiveness of the proposed evaluation method, we carry out the quantitative and the qualitative experiments. For the quantitative experiment, we prove the accuracy of the photo-realistic synthetic image. Also, the proposed evaluation method is experimented on the 3D reconstruction with regards to the change of the matching window. Based on the fact that the experimental result agrees with the anticipation, we can qualitatively manifest the effectiveness of the proposed evaluation method.

Gametogenic Cycle and the Number of Spawning Seasons by Quantitative Statistical Analysis, and the Size at 50% of Group Sexual Maturity in Atrina (Servatrina) pectinata (Bivalvia: Pinnidae) in Western Korea

  • Chung, Jae Seung;Chung, Ee-Yung;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.363-375
    • /
    • 2012
  • The gametogenic cycle, the number of spawning seasons per year and first sexual maturiity of the pen shell, Atrina (Servatrina) pectinata, were investigated by quantitative statistical analysis using an Image Analyzer System. Compared two previous results (the spawning periods in the reproductive cycles in 1998 and 2006) by qualitative histological analysis with the present results by quantitative statistical analysis, there are some differences in the spawning periods: the spawning period (June to September) by quantitative statistical analysis was one month longer than those of two previous reports (June to July or June to August) by qualitative histological analysis. However, the number of spawning seasons studied by the qualitative and quatitative analyses occurred once per year. In quantitative statistical analysis using an image analyzer system, the patterns of monthly changes in the percent (%) of the areas occupied by follicles to the ovary area in females (or that of the areas occupied by spermatogenic stages to the testis area in males) showed a maximum in May, and then sharply droped from June to September, 2006. From these data, it is apparent that the spawning season of A. (S.) pectinata occurred once a year from June to September, indicating a unimodal gametogenic cycle during the year. Shell heights of sexually mature pen shells (size at 50% of group sexual maturity, $GM_{50}$) that were fitted to an exponential equation were 15.81 cm in females and 15.72 cm in males (considered to be one year old).

Quantitative Analysis of Modified Fermi-Direc Filter applied to Clinical MR Image (임상 MR영상에 적용된 변형 Fermi-Direc필터의 정량적 평가)

  • Kim, Ki-Hong;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.225-230
    • /
    • 2009
  • Filtering has been used to improve the image quality not only in MRI but in most image processing fields. In this paper, modified Fermi-Direc filter was transformed in various shapes, and then the optimum shape was designed. In addition, Newly made filter was applied in real clinic, which showed the obvious improvement in image quality. In conclusion, filtered image was superior to original image in contrast and sharpness. Then, this was proved by the histogram of R, G, B channel used for the quantitative analysis.

A pilot application study of densitometric image analysis as a potential comparative evaluation method for visualized fingerprints

  • Kim, Eun-Ji;Kim, Soo-Kyung;Seo, Kyung-Suk;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.197-207
    • /
    • 2020
  • The current comparison methods with scoring systems that are used to compare visualized latent fingerprints (LF) have disadvantages. Evaluators using these methods are prone to make errors and fail to discriminate LFs correctly to notice the differences among those LFs. Therefore, a comparative and quantitative evaluation method that is capable of obtaining more objective and quantitative results is needed. Densitometric image analysis (DIA) is used in other fields as a reliable semi-quantitative comparison method. To apply DIA to LFs, the potential variables that can occur during the DIA process were tested. The visualized ridges of LFs can be compared using the concentration of dots against the background to make it possible to analyze the ridges with DIA. The variables that can be present during the DIA process include the thickness of the analysis line, the number of ridges to be taken, the number of divided zones within each of the fingerprints, and the angles of the analysis line against the ridge lines that were selected. From the analysis of the inked fingerprints and circular lines that are similar to fingerprints, the angle of the analysis lines with the ridge line was the most significant variable. The preliminary test result was applied to the comparison of LFs that were developed with the powder method and then compared with the AFIS analysis. A similar trend was found, and a more detailed and semi-quantitative comparison of the visualized LFs was possible. In the future, it is necessary to check the evaluative ability of the DIA method by analyzing the visualized LFs with other various development methods. However, DIA is currently an option that can be used as an objective comparative evaluation method during fingerprint studies with supplementary role.

Color Analysis for the Quantitative Aesthetics of Qiong Kiln Ceramics

  • Wang, Fei;Cha, Hang;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.97-106
    • /
    • 2020
  • The subjective experience would degrade the current artificial artistic aesthetic analysis. Since Qiong kiln ceramics have a long history and occupy a very important position in ceramic arts, we employed computer-aided technologies to quickly automatically accurately and quantitatively process a large number of Qiong kiln ceramic images and generate the detailed statistical data. Because the color features are simple and significant visual characteristics, the color features of Qiong kiln ceramics are analyzed for the quantitative aesthetics. The Qiong kiln ceramic images are segmented with GrabCut algorithm. Three moments (1st-order, 2nd-order, and 3rd-order) are calculated in two typical color spaces, namely RGB and HSV. The discrimination powers of the color features are analyzed according to various dynasties (Tang Dynasty, Five Dynasties, Song Dynasty) and various utensils (Pot, kettle, bowl), which are helpful to the selection of the discriminant color features among various dynasties and utensils. This paper is helpful to promoting the quantitative aesthetic research of Qiong kiln ceramics and is also conducive to the research on the aesthetics of other ceramics.

Quantitative Measurement of the Glottal Area Waveform(GAW) in Unilateral Vocal Fold Paralysis (편측성대마비환자에서의 성문면적파형(Glottal Area Waveform)의 정량적 측정)

  • 최홍식;김명상;최재영;안성윤;이세영;홍정표
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Type Ⅰ thyuroplasty in conjunction with arytenoid adduction is one of the excellent techniques in the treatment of unilateral vocal fold paralysis. But perioperative objective evaluation of the patients is difficult. With the development of the videostroboscopy and image analysis program, we could quantify the Glottal Area Waveform(GAW) in patients with unilateral vocal fold paralysis and investigated the relationship between the glottal area and aerodynamic and acoustic parameters. Eight female patients who were performed type Ⅰ thyroplasty in conjunction with arytenoid adduction and 5 females with normal vocal function were involved in this study. Preoperative and postoperative videostroboscopy and vocal function study wire performed. GAW was analysed quantitatively with image analysis program (Kay Stroboscope Image analysis, KSIP) Peak Glottal Area(PGA), Baseline Offset(BO), and Closing Phase(CP) were increased in patients with unilateral vocal fold paralysis and they were reduced after the operation. Mean flow Rate (MFR) was well correlated with the PGA in normal control group and unilateral vocal fold paralysis patients. Noise to harmonic ratio(NHR) was correlated with PGA only in preoperative unilateral vocal fold paralysis patients. In conclusion quantitative measurement of the GAW is useful method in evaluation of unilateral vocal f31d paralysis patients.

  • PDF

A Study on the Quantitative Visualization of Rayleigh-Bernard Convection Using Thermochromic Liquid Crystal (감온액정을 이용한 Rayleigh-Bernard 대류의 정량적 가시화에 관한 연구)

  • 배대석;김진만;권오봉;이동형;이연원;김남식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.395-404
    • /
    • 2003
  • Quantitative data of the temperature and velocity were obtained simultaneously by using liquid crystal tracer. PIV(Particle Image Velocimety) based on a grey-level cross-correlation method was used for visualizing and analysis of the flow field. The temperature gradient was obtained by applying the color-image processing to a visualized image, and a neural-network a1gorithm was applied to the color-to-temperature calibration. This simultaneous measurement was applied to the Rayleigh-Bernard convection. This paper describes the method, and presents the quantitative visualization of Rayleigh-Bernard convection and the effect of aspect ratio and viscosity. Also the experimental results were compared with the numerical results.

A Study on the Acquisition of Multi-Viewpoint Image for the Analysis of form and Space and its Effectiveness (형태 및 공간분석을 위한 다시점(多視點) 이미지 획득 및 유효성에 관한 연구)

  • Lee, Hyok-Jun;Lee, Jong-Suk
    • Korean Institute of Interior Design Journal
    • /
    • no.34
    • /
    • pp.149-156
    • /
    • 2002
  • This study intends to acquire objective models for basic quantitative analysis of pattern and space through image-recognition technique, and verify the effectiveness of such acquired models. Many experiments showed that the recognized result can be varied depending on the different viewpoints and the analysis based on the single-viewpoint images does not provide objectivity. The experiment using multi-viewpoint image models, which was attempted as an alternative for the disadvantages, showed the recognition similar to that of the actual model. Especially, images generated at laboratory using miniature model may be useful in comparing and understanding plural number of patterns. The models that have been acquired using such images may be hard to use in acquiring images for analyzing actual building patterns or indoor space, although they may be useful in pattern analysis using miniature model. The disadvantage, however, can be supplemented with panorama VR and C. G. simulation technique. Steady researches are required on the application of visual information to the image recognition principle and the model for quantitative analysis of pattern and space in addition to the research on the construction of the model that can be used in comparing and analyzing not only form and space but also miniature models.

Medical Image Processing System for Morphometric and Functional Analysis of a Human Brain (인간 뇌의 형태적 및 기능적 분석을 위한 의료영상 처리시스템)

  • Kim, Tae-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.977-991
    • /
    • 2000
  • In this paper, a medical image processing system was designed and implemented for morphometric and functional analysis of a human brain. The system is composed of image registration, ROI(region of interest) analysis, functional analysis, image visualization, 3D medical image database management system(DBMS), and database. The software processes an anatomical and functional image as input data, and provides visual and quantitative results. Input data and intermediate or final output data are stored to the database as several data types by the DBMS for other further image processing. In the experiment, the ROI analysis, for a normal, a tumor, a Parkinson's decease, and a depression case, showed that the system is useful for morphometric and functional analysis of a human brain.

  • PDF