• Title/Summary/Keyword: quantitative X-ray diffraction analysis

Search Result 70, Processing Time 0.032 seconds

Quantitative Analysis of Mineral Composition in Porland Cement Clinker by X-ray Diffraction (포틀랜드 시멘트 클린커 광물조성의 X선구절에 의한 정량분석)

  • Chang, Se-Kyung;Rhee, Jhun;Han, Ki-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.2
    • /
    • pp.64-70
    • /
    • 1986
  • In this investigation x-ray diffraction method was mainly studied for quantitative analysis of clinker mineral composition. And also optical microscopic observation and Bogue calculation method were applied to compare with the x-ray diffraction method. In the procedure of x-ray diffraction analysis graphite monochromator automatic divergence slit and spinner for sample holder were used for minimizing the error due to the operation of the equipment. Especially the separation of overlapped peaks were proceeded by micro-processor automatically. The results of x-ray diffraction method for synthesized clinker were consistent with the Bogue value and the results of optical microscopic observation. However the results of quantitative analysis of mineral composition or commercial clinker containing solid solution of minor component were different from the Bogue value. On the other hand they agreed reasonably well with results of the optical mic-roscopic observation.

  • PDF

A Study of Mineral Quantification on Clay-Rich Rocks (점토질 암석의 광물정량 분석법 연구)

  • Byeong-Kook, Son;Gi-O, An
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A quantitative phase analysis method of X-ray powder diffraction was studied to determine the mineral content of clay-rich rocks practically as well as effectively. For quantitative X-ray powder diffraction analysis of the clay-rich rocks, it is necessary to prepare whole-rock powder samples with a random orientation by side mounting method. In addition, for the identification of the clay minerals in the rock, it is required to prepare an oriented mount specimen with a clay particle size of 2 ㎛ or less, ethylene glycol treatment, and heat treatment. RIR (reference intensity ratio) and Rietveld method were used for the quantitative analysis of the clay-rich rocks. It was possible to obtain the total clay and the non-clay minerals contents from the whole-rock X-ray diffraction profiles using the RIR values. In addition, it was possible to calculate the relative content of each clay mineral from the oriented X-ray diffraction profiles of the clay particle size and assign it to the total clay. In the Rietveld method of whole-rock X-ray diffraction, effective quantitative values were obtained from the Rietveld diffraction patterns excluded the region of less than 10 degrees (2θ). Similar quantitative values were shown in not only the RIR but the Rietveld methods. Therefore, the analysis results indicate a possibility of a routine quantitative analysis of clay-rich rocks in the laboratory. However, quantitative analysis of clay minerals is still a challenge because there are numerous varieties of clay minerals with different chemical and structural characteristics.

A Study of Practical and Optimized Mineral Quantification (실용적이고 최적화된 광물정량분석법 연구)

  • Son, Byeong-Kook;An, Gi-O
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.227-239
    • /
    • 2021
  • A practical and effective method of X-ray powder diffraction analysis was investigated for quantitative analysis of the mineral content of natural samples. Sample mounting experiments were conducted to select the best randomly oriented powder sample mount. A comparative experiment was also made between a reference intensity ratio (RIR) method, which compares a single peak intensity with standard material, and the Rietveld method, which calculates a full X-ray diffraction pattern, to search for the effective method of mineral quantification. In addition, samples containing amorphous minerals were quantitatively analyzed by the Rietveld method and the efficiency was reviewed. As a result of the study, the optimal random orientation could be reached by the side mounting method. The Rietveld method using the full pattern of X-ray diffraction was more suitable for mineral quantitative analysis, rather than the RIR method using a specific peak. However, either method could depend on the analyst's experience in addition to analytical technique. Moreover, amorphous minerals can be quantitatively analyzed by the Rietveld method, and the analysis results make the geological analysis possible.

The Study on the Quantitative Analysis of Accident Fracture Surface by X-ray Diffraction (X-ray 회절에 의한 사고파면의 정량적 해석에 관한 연구)

  • Choi, Seong-Dae;Kweon, Hyun-Kyu;Cheong, Seon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.117-123
    • /
    • 2002
  • X-ray diffraction observation of fracture surfaces yields useful information to analyze the causes of failure accidents of engineering structures. This experimental technique, named X-ray fractography, has been developed especially in metal and mechanical engineering fields. The distributions of the residual stress and the half value breadth of diffraction profiles beneath the fatigue fracture surface were measured with SNCM 439, HT100 and Ti-6Al-4V alloy. The size of the maximum plastic zone was successfully determined on the basis of the measured distributions. This size was correlated to maximum stress intensity factor. The distributions of the half value breadth of diffraction profiles on the fatigue fracture surfaces were measured with SNCM 439. HT100. The equations of x-ray parameter distribution were possible to estimated fracture parameters of fatigue fracture surfaces.

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Seong-Ung;Hong, Sun-Hyeok;Jeon, Hyeong-Yong;Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.

The Determination of Glass content in fly Ash by X-Ray Diffraction (분말X선회절법에 의한 플라이 애시의 유리질 정량)

  • 이승헌;김홍주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • The purpose of this study is to develope an accurate procedure for measuring the glass content of fly ash produced by bituminous coal to assist in predicting their behavior in concrete. Quantitative mineralogical compositions of fly ashes were obtained by internal standard method using powder X-ray diffraction analysis. In the X-ray diffraction method, the specimen and standard fluorite were cautiously mixed and pulverized to 22$\mu$m in wet process so as to avoid the prefered orientation of the crystal and microabsorption effect of X-ray. calibration curve were fitted for several references peaks of four phases:$\alpha$-quartz. mullite, magnetite, hematite. The amount of glass was calculated by subtracting the amount of crystal phase and loss on ignition from the total amount. Glass content determined with this method ranged from 66.7 to 75.wt%.

  • PDF

Quantitative X-ray Diffraction Analysis of Synthetic Mineral Mixtures Including Amorphous Silica using the PONKCS Method (PONKCS 방법을 이용한 비정질 실리카 함유 인공광물혼합시료의 정량 X-선회절 분석)

  • Chon, Chul-Min;Lee, Sujeong;Lee, Sung Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • X-ray powder diffraction is one of the most powerful techniques for qualitative and quantitative analysis of crystalline compounds. Thus, there exist a number of different methods for quantifying mineral mixtures using X-ray diffraction pattern. We present here the use of Rietveld and PONKCS (partial or no known crystal structure) methods for quantification of amorphous and crystallized mineral phases in synthetic mixtures of standard minerals (amorphous silica, quartz, mullite and corundum). Pawley phase model of amorphous silica was successfully built from the pattern of 100 wt% amorphous silica and internal standard-spiked samples by PONKCS approach. The average of absolute bias for quantities of amorphous silica was 1.85 wt%. The larger bias observed for lower quantities of amorphous silica is probably explained by low intensities of diffraction pattern. Averages of absolute bias for minerals were 0.53 wt% for quartz, 0.87 wt% for mullite and 0.57 wt% for corundum, respectively. The PONKCS approach achieved improved quantitative results compared with classical Rietveld method by using an internal standard.

Application of Quantitative X-ray Diffraction Analysis for Unburned Coal Content on Coke-Char-Sinter Mixtures (고온에서 발생한 코크스-미연소탄-소결광의 혼합물 중 미연소탄의 정량화를 위한 분말 X-선 회절법 적용)

  • 김재명;정진경;김성만;허완욱;김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.481-487
    • /
    • 2003
  • A technique for determination of proportions of char, coal ana coke is needed in order to monitor pulverized coal injection performance in operating blast furnace. Quantitative X-ray powder diffraction analysis can be applied to the problem providing that structural information on carbonaceous materials, coal, char, coke and their mixture are known. Chars were prepared from a coal at different temperatures (1000∼1400$^{\circ}C$) and were characterised by X-Ray powder Diffraction (XRD). The XRD result gave crystallite size (height Lc and diameter, La), aromaticity, number of (002) plane in carbon, and d-spacing. As a result, with increasing heat treat temperature of char, Lc$_{(002)}$, La$_{(10)}$ and number of (002) plane in carbon were increased, and d-spacing and FWHM(Full With Half Maximum) were decreased. Result of prediction of amount of char from the mixtures (char, coke and ore) based on the Lc$_{(002)}$ information of two mixtures (coke and char) showed very close values expected.

Quantitative Interpretation of Cooling Rate of Clinker and It's Effects on the Cement Strength Development (클링커 냉각속도의 정량적 해석 및 냉각속도가 시멘트 강도발현에 미치는 영향고찰)

  • Kim, Chang-Bum;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.224-229
    • /
    • 2007
  • To evaluate the cooling rate of clinker quantitatively, several clinkers with different cooling rate were made in the laboratory. The X-ray diffraction pattern of Ferrite 002 reflection were measured and the parameters were calculated by using split type pseudo-Voigt function. The X-ray diffraction patterns of the Ferrite phase in the clinkers from cement manufacturing plant were analyzed by using the parameters and the analysis program was developed to calculate the cooling rate quantitatively. The cooling rate coefficients of the clinkers were calculated by using the profile fitting method of the program and the influence of cooling rate on strength was evaluated. The results show that there is a close relation between the cooling rate of clinker and the strength of cement.

Determination of mixing ratios in a mixture via non-negative independent component analysis using XRD spectrum (XRD 스펙트럼의 비음독립성분분석을 통한 혼합물 구성비 결정)

  • You, Hanmin;Jun, Chi-Hyuck;Lee, Hyeseon;Hong, Jae-Hwa
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.502-507
    • /
    • 2007
  • X-ray diffraction method has been widely used for qualitative and quantitative analysis of a mixture of materials since every crystalline material gives a unique X-ray diffraction pattern independently of others, with the intensity of each pattern proportional to that material's concentration in a mixture. For determination of mixing ratios, extracting source spectra correctly is important and crucial. Based on the source spectra extracted, a regression model with non-negativity constraint is applied for determining mixing ratios. In some mixtures, however, X-ray diffraction spectrum has sharp and narrow peaks, which may result in partial negative source spectrum from independent component analysis. We propose several procedures of extracting non-negative source spectra and determining mixing ratios. The proposed method is validated with experimental data on powder mixtures.