DOI QR코드

DOI QR Code

Quantitative X-ray Diffraction Analysis of Synthetic Mineral Mixtures Including Amorphous Silica using the PONKCS Method

PONKCS 방법을 이용한 비정질 실리카 함유 인공광물혼합시료의 정량 X-선회절 분석

  • Chon, Chul-Min (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Sujeong (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Sung Woo (Center for Research Facilities, Chungnam National University)
  • Received : 2012.12.22
  • Accepted : 2013.02.28
  • Published : 2013.03.31

Abstract

X-ray powder diffraction is one of the most powerful techniques for qualitative and quantitative analysis of crystalline compounds. Thus, there exist a number of different methods for quantifying mineral mixtures using X-ray diffraction pattern. We present here the use of Rietveld and PONKCS (partial or no known crystal structure) methods for quantification of amorphous and crystallized mineral phases in synthetic mixtures of standard minerals (amorphous silica, quartz, mullite and corundum). Pawley phase model of amorphous silica was successfully built from the pattern of 100 wt% amorphous silica and internal standard-spiked samples by PONKCS approach. The average of absolute bias for quantities of amorphous silica was 1.85 wt%. The larger bias observed for lower quantities of amorphous silica is probably explained by low intensities of diffraction pattern. Averages of absolute bias for minerals were 0.53 wt% for quartz, 0.87 wt% for mullite and 0.57 wt% for corundum, respectively. The PONKCS approach achieved improved quantitative results compared with classical Rietveld method by using an internal standard.

X-선회절 분석은 결정질 물질의 정량과 정성분석을 위한 가장 효과적인 분석기술이며, 따라서 회절자료를 이용한 매우 다양한 광물조성 정량분석법이 존재한다. 본 연구에서는 비정질 실리카, 석영, 뮬라이트, 강옥으로 제조한 인공광물혼합시료를 대상으로 리트벨트법과 PONKCS (partial or no known crystal structure) 방법을 적용하여 정량 X-선회절 분석을 수행하였다. 100% 비정질 실리카와 내부표준시료 첨가 시료의 회절자료를 이용하여 PONKCS 방법으로 비정질 실리카의 결정 모형을 성공적으로 구축하였다. 비정질 실리카의 경우, 원 중량 대비 치우침의 절대값 평균은 1.85 wt%였다. 비정질 실리카의 함량이 작은 경우 상대적으로 높은 치우침을 보이는데, 이는 배경 회절패턴의 강도가 낮음에 기인하는 것으로 판단된다. 그밖에 석영, 뮬라이트, 강옥의 경우, 치우침의 절대값 평균은 각각 0.53 wt%, 0.87 wt%, 0.57 wt%였다. 내부표준물질 혼합법을 적용한 전통적인 리트벨트 정량분석 결과와 비교할 때 PONKCS 방법이 비정질 실리카를 포함한 인공광물혼합시료에 대하여 신뢰도 높고 성공적인 정량 분석법임을 확인해 주었다.

Keywords

References

  1. Bish, D.L. and Howard, S.A. (1988) Quantitative phase analysis using the Rietveld method. Journal of Applied Crystallography, 21, 86-91. https://doi.org/10.1107/S0021889887009415
  2. Brouwers, H.J.H. and Van Eijk, R.J. (2002) Fly ash reactivity: extension and application of a shrinking core model and thermodynamic approach. Journal of Materials Science, 37, 2129-2141. https://doi.org/10.1023/A:1015206305942
  3. Cheary, R.W. and Coelho, A. (1992) A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25, 109-121. https://doi.org/10.1107/S0021889891010804
  4. Cho, H.G., Kim, S.-O., Yi, H.-I., and Shin, K.-H. (2011) Mineral distribution in the southeastern Yellow Sea surface sediments; KORDI cruise samples in 2010. Journal of the Mineralogical Society of Korea, 24, 205-216 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.3.205
  5. Chon, C.-M., Kim, J.G., and Lee, G.H. (2006) Pyrite content using quantitative X-ray diffraction analysis and its application to prediction of acid rock drainage. Journal of the Mineralogical Society of Korea, 19, 71-80 (in Korean with English abstract).
  6. Chung, F.H. (1974a) Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. I. Matrix- Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7, 519-525. https://doi.org/10.1107/S0021889874010375
  7. Chung, F.H. (1974b) Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. II. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures. Journal of Applied Crystallography, 7, 526-531. https://doi.org/10.1107/S0021889874010387
  8. Hill, R.J. and Howard, C.J. (1987) Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. Journal of Applied Crystallography, 20, 467-474. https://doi.org/10.1107/S0021889887086199
  9. Hillier, S. (2003) Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). In: Clay Minerals Cements in Sandstones (R.H. Worden and S. Morad, editors). Special Publication 34, International Association of Sedimentologists, 213-251.
  10. Jones, R.C. (1989) A computer program technique for X-ray diffraction curve fitting/peak decomposition. In: Quantitative Mineral Analysis of Clays. Pevear D.R., and Mumpton F.A. (eds.), cms workshop lectures, 1, The Clay Minerals Society, 39-52.
  11. Moon, D.H., Cho, H.G., Kim, S.-O., Yi, H.-I., and Do, J.Y. (2009) Quantitative X-ray diffraction analysis of the Gyeonggi bay surface sediments. Journal of the Mineralogical Society of Korea, 22, 279-288 (in Korean with English abstract).
  12. O'Connor, B.H. and Raven, M.D. (1988) Application of the Rietveld refinement procedure in assaying powdered mixtures. Powder Diffraction, 3, 2-6. https://doi.org/10.1017/S0885715600013026
  13. Ortiz, A.L., Cumbrera, F.L., Sanchez-Bajo, F., Guiberteau, F., and Caruso, R. (2000) Fundamental Parameters Approach in the Rietveld Method: A Study of the Stability of Results Versus the Accuracy of the Instrumental Profile. Journal of the European Ceramic Society, 20, 1845-1851. https://doi.org/10.1016/S0955-2219(00)00056-X
  14. Pietersen, H.S., Fraay, A.L.A., and Bijen, J.M. (1989) Reactivity of fly ash at high pH, in fly ash and coal conversion by-products: Characterization, utilization and disposal VI. In: Glasser FP, Day RL, editors. Materials research society symposium proceedings. Materials Research Society, 139.
  15. Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
  16. Scarlett, N.V.Y. and Madsen, I.C. (2006) Quantification of phases with partial or no known crystal structures. Powder Diffraction, 21, 278-284. https://doi.org/10.1154/1.2362855
  17. Scarlett, N.V.Y., Madsen, I.C., and Whittington, B.I. (2008) Time-resolved diffraction studies into the pressure acid leaching of nickel laterite ores: a comparison of laboratory and synchrotron X-ray experiments. Journal of Applied Crystallography, 41, 572-583. https://doi.org/10.1107/S0021889808006894
  18. Sindhunata, van Deventer, J.S.J., Lukey, G.C., and Xu, H. (2006) Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Industrial & Engineering Chemistry, 45, 3559-3568. https://doi.org/10.1021/ie051251p
  19. Son, B.-K., Kim, H.-J., and Ahn, Gi.-O. (2009) Mineral composition of the sediment of Ulleung basin, Korea. Journal of the Mineralogical Society of Korea, 22, 115-127 (in Korean with English abstract).
  20. Vassilev S.V. and Vassileva C.G. (1996) Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Processing Technology, 48, 85-106. https://doi.org/10.1016/S0378-3820(96)01021-1
  21. Wang, X., Li, J., Hart, R.D., Van Riessen, A., and McDonald, R. (2011) Quantitative X-ray diffraction phase analysis of poorly ordered nontronite clay in nickel laterites. Journal of Applied Crystallography, 44, 902-910. https://doi.org/10.1107/S0021889811027786
  22. Williams, R.P. and Van Riessen, A. (2010) Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel, 89, 3683-3692. https://doi.org/10.1016/j.fuel.2010.07.031
  23. Williams, R.P. Hart, R.D., and Van Riessen, A. (2011) Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy, Journal of the American Ceramic Society, 94, 2663-2670. https://doi.org/10.1111/j.1551-2916.2011.04410.x
  24. Young, R.A. (1993) The Rietveld Method. IUCr Monographs on Crystallography, Vol. 5, Oxford University Press, 298p.

Cited by

  1. Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers vol.23, pp.9, 2013, https://doi.org/10.3740/MRSK.2013.23.9.510
  2. Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers vol.23, pp.6, 2014, https://doi.org/10.7844/kirr.2014.23.6.3
  3. Na/Al 비와 양생온도가 지오폴리머의 백화억제에 미치는 영향 vol.27, pp.6, 2013, https://doi.org/10.7844/kirr.2018.27.6.59