• 제목/요약/키워드: quantile

검색결과 481건 처리시간 0.027초

구간형 자료의 주성분 분석에 관한 연구 (On principal component analysis for interval-valued data)

  • 최수진;강기훈
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.61-74
    • /
    • 2020
  • 심볼릭 자료 중 하나인 구간형 자료는 모든 관측값에서 단일 값이 아닌 구간을 값으로 취하며, 관측값 내에 변동이 존재한다는 특징을 갖는다. 주성분 분석은 자료의 분산을 최대로 설명하여 자료의 차원을 축소하는 방법이므로 구간형 자료의 주성분 분석은 관측값 간의 분산 뿐만 아니라 관측값 내의 분산 역시 설명하여야 한다. 본 논문에서는 구간형 자료의 세 가지 주성분 분석법을 소개하고자 한다. 또한 기존의 분위수 방법에서 균일분포를 사용하는 것이 아니라 구간의 중심점 부근이 좀 더 많은 정보를 가지고 있는 것으로 보고 절단정규분포를 사용하는 방법을 제안하였다. 모의실험과 OECD 관련 실제 통계 자료를 통하여 각 방법의 결과를 비교해 보았다. 마지막으로 분위수 방법의 경우 화살표 표현법을 통해 주성분 산점도를 그리고 분위수들의 위치와 분포를 확인하였다.

패널 분위수회귀 모형을 사용한 우리나라 지방 상수도 생활용수 수요의 가격탄력성 추정 (Estimating Price Elasticity of Residential Water Demand in Korea Using Panel Quatile Model)

  • 김형건
    • 자원ㆍ환경경제연구
    • /
    • 제27권1호
    • /
    • pp.195-214
    • /
    • 2018
  • 우리나라에서도 최근 잦아진 가뭄으로 물 부족에 대한 경각심이 높아졌다. 특히, 2015년의 가뭄은 경제적으로 큰 피해를 야기하였고 적극적인 물 수요 관리의 필요성을 부각시킨 계기가 되었다. 경제학적 측면에서 수요관리 정책을 설계하기 위해 선행되어야 될 점 중 하나는 신뢰성 있는 가격탄력성의 추정이다. 그러므로 본 연구에서는 기존 국내 선행연구들에 비해 강건한 생활용수 수요의 가격탄력성을 추정하고자 한다. 이를 위해 2010년도에서 2013년도까지 지방 상수도 공급지역 161개의 자료를 패널 분위수회귀모형을 사용해 추정하였고 이를 패널자료 회귀모형의 결과와 비교 분석하였다. 분석 결과, 생활용수 수요의 가격탄력성은 -0.156에서 -0.189 사이의 값을 갖는 것으로 추정되었다. 또한 본 연구에서는 조건부 평균 회귀를 사용하는 경우 왼쪽꼬리가 길고 오른쪽 분포가 두꺼운 우리나라 생활용수 수요량 분포의 특징으로 수요량이 많은 지역들의 성향이 추정결과에 상대적으로 크게 반영된다는 점을 확인하였다.

분위수 부스팅을 이용한 미세먼지 농도 예측 (Particulate Matter Prediction using Quantile Boosting)

  • 권준현;임예지;오희석
    • 응용통계연구
    • /
    • 제28권1호
    • /
    • pp.83-92
    • /
    • 2015
  • 고농도 미세먼지($PM_{10}$)에 노출되는 것은 호흡기 질환 뿐만 아니라 피부, 안구, 심혈관계 질환 등을 야기한다. 따라서 미세먼지 농도를 정확히 예측하는 방법을 개발하는 것은 국민건강과도 깊은 관련이 있다. 현재 국립환경과학원에서는 미세먼지 농도가 높은 "나쁜날씨"를 예측하기 위해 의사결정나무 모형을 사용하고 있다. 그러나 모형 자체의 불안정성은 차치하더라도 의사결정나무는 전체 데이터의 9%밖에 차지하지 않는 "나쁜날씨"를 예측하기에 적합하지 못하다. 본 논문에서는 국립환경과학원에서 사용하는 모형의 부정확성과 부적절성을 제시하는 한편, 분위수 손실 함수를 적용한 새로운 모형의 유용성을 제시한다. 그리고 새로운 모형의 성능을 여러 ${\tau}$ 값에 대해 평가하고 비교를 통해 기존 모형 교체의 타당성을 보인다.

Vector at Risk와 대안적인 VaR (Vector at Risk and alternative Value at Risk)

  • 홍종선;한수정;이기쁨
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.689-697
    • /
    • 2016
  • 금융시장 위험관리 수단으로 많이 사용하는 기법 중의 하나는 Morgan이 제안한 최대손실금액을 추정하는 VaR (Value at Risk)이다. VaR은 한 산업의 금융위험 측정도구로 사용되어지지만 실제 생활에서는 여러 회사 또는 국내 전체의 산업의 VaR를 추정하는 경우가 많다. 따라서 투자할 여러 산업에 대하여 특정한 포트폴리오가 설정된 경우에 다변량분포에 대한 VaR를 추정하는 문제가 필요하다. 본 연구에서는 다변량분포에 대한 VaR를 추정하기 위하여, 다차원 분위 벡터를 제안하고, 이를 바탕으로 다차원 공간에서의 Vector at Risk를 정의한다. 다변량분포에 대하여 특정한 포트폴리오가 설정된 경우에, Vector at Risk 중에서의 한 점을 가장 적절한 VaR로 설정하는 방법을 제안한다. 이를 대안적인 VaR이라고 정의하고, 다변량 분포에 대한 이 방법에 대하여 토론한다. 2변량과 3변량의 예제를 통해 본 연구의 대안적인 VaR과 Morgan의 VaR를 각각 구하고, 비교 설명하면서 대안적인 VaR의 특징을 탐색한다.

정상성 및 비정상성 수문자료의 지역빈도해석 (Regional frequency analysis for stationary and nonstationary hydrological data)

  • 허준행;김한빈
    • 한국수자원학회논문집
    • /
    • 제52권10호
    • /
    • pp.657-669
    • /
    • 2019
  • 수공구조물의 설계 시 빈도해석을 통해 수문자료의 통계적 특성을 고려하여 설계빈도에 대한 정확한 확률수문량을 산정하는 것은 매우 중요한 절차이다. 지역빈도해석은 대상 지점의 자료만을 이용하여 확률수문량을 산정하는 지점빈도해석과 달리 수문학적으로 동질한 것으로 판단되는 주변지점들의 자료를 모두 포함하여 빈도해석을 수행하므로 미계측 지점 또는 자료 보유년수가 짧은 지점에서 보다 정확한 확률수문량 산정이 가능하다. 본 총설논문에서는 이러한 지역빈도해석 기법을 수문자료의 특성에 따라 정상성 지역빈도해석과 비정상성 지역빈도해석으로 구분하고, 각 방법의 기본이론과 절차 및 관련 연구를 홍수지수법을 중심으로 상세히 설명하였으며 최신 연구동향을 정리하였다. "홍수량 산정 표준지침"의 개정을 통해 포함되는 정상성 지역빈도해석에 대해 언급하고, 비정상성 지역빈도해석과 관련한 향후 연구주제를 기술하며 논문을 마무리 한다.

기상청 국가표준시나리오의 편의보정방법에 따른 극한강우량의 차이 분석 (Analysis of Difference in extreme rainfall according to bias-correction method on KMA national standard scenarios)

  • 최정현;원정은;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.195-195
    • /
    • 2018
  • 기상청에서는 영국 전지구기후모델인 HadGEM2-AO 기반의 영국 지역기후모델 HadGEM3-RA로부터 생산된 기후변화 시나리오를 기후변화예측을 위한 국가표준시나리오 자료로 제공하고 있다. 하지만, 기후모델의 특성상, 관측자료와 모의자료 간에는 통계적인 차이가 존재하며, 이러한 차이를 무시하고 원자료를 그대로 분석에 사용하는 것은 무의미 하다. 따라서 이러한 보정하기 위해서 주로 Quantile Mapping, Quantile Delta Mapping, Detrended Quantile Mapping 방법이 주로 사용된다. 하지만 어떠한 편의보정 방법이든 극값이 다수 존재하는 미래기간 모의자료를 보정할 때에는 외삽법(extrapolation)의 적용이 필요하다. 외삽법의 경우 constant correction 방법이 주로 적용된다. 본 연구에서는 기상청의 국가표준시나리오를 대상으로 이러한 편의보정 방법의 적용에 따른 미래 극한강우량의 차이를 분석하고자 하였다. 우선, 모의자료에서 우리나라 주요 기상관측지점에 해당하는 격자로부터 강우량자료를 추출하고 연최대강우시계열을 산정하였다. 그 후, 위의 세 가지 편의보정 방법을 이용하여 강우자료의 편의보정을 수행하였으며, constant correction 방법을 적용하여 이상치를 보정하였다. 그 후, 보정된 미래기간 모의자료의 추세를 분석하고, 이를 미래 확률강우량 산정방법인 scale-invariance 기법에 적용하여 미래 확률강우량을 산정하였다. 그 결과, 외삽법의 적용에 따라 편의보정 방법에 따라 미래 자료의 추세 또는 확률강우량의 변화패턴은 큰 차이를 나타내지 않았지만, 그 값 자체는 다소 차이가 있는 것으로 나타났다. 이러한 차이는 사용된 GCM과 RCM 조합으로 인한 오차와 더해져, 미래 예측결과의 불확실성으로 나타나기에 미래 극한강우량 예측을 위해서는 다수의 GCM, RCM 조합뿐만 아니라 다수의 편의보정 방법에 따른 결과도 함께 고려(ensemble)하여 결과를 나타내는 것이 필요할 것으로 판단된다.

  • PDF

성능지표 기반 대표 GCM 선정 (Selection of Representative GCM Based on Performance Indices)

  • 송영훈;정은성;망응자로이
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.101-101
    • /
    • 2019
  • 전 지구적 기온상승으로 인한 기후변화는 사회적, 수문학적, 다양한 분야에 영향을 미친다. 또한 IPCC(Intergovernmental Panel on Climate Change)의 보고서에 따르면 미래에도 지속적으로 기온상승이 예상되며, 이러한 현상은 인류의 삶에 큰 영향을 미칠것으로 예상된다. 또한 수자원 및 관련 분야에서도 기온 상승에 따른 강수량, 강수의 주기 변동, 극한 기후사상의 심도(severity)와 빈도 변화에 따른 다양한 연구가 진행되고 있으며, 미래의 강우량과 온도를 예측하는 기후변화연구에서는 다양한 기후모형을 고려하여 분석한다. 하지만 모든 기후모형이 우리나라에 적합한 것은 아니므로 과거 기후를 모의한 결과를 토대로 성능이 뛰어난 모형의 결과에 더 높은 가중치를 주고 미래를 예측하는 연구가 활발히 진행되고 있다. 일반적으로 기후모형으로 GCM (General Circulation Model) 모의 결과가 이용되는데 우리나라에 대한 GCM 결과의 정확성을 분석하는 연구는 부족한 실정이다. 따라서 본 연구에서는 21개의 GCM을 대상으로 과거 모의 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량과 비교하여 각 GCM들의 성능을 평가하고 이를 토대로, GCM들의 우선순위를 선정하였다. 또한 격자 기반 GCM 결과를 IDW (Inverse Distance Weighted) 방법을 사용하여 기상관측소로 지역적 상세화를 수행하였으며, GCM과 관측자료 사이의 편이를 보정하기 위해 6가지의 Quantile Mapping 방법과 Random Forest 기법을 사용하였다. 또한 편이 보정 기법 중 성능이 좋은 기법을 선택하여 관측소에 적용하였다. 편이 보정된 GCM 모의결과에 대한 성능을 토대로 우수한 GCM 순위를 도출하기 위해 다기준의사결정기법 중 하나인 TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)를 이용하였다. 그리고 GCM의 전망기간인 2010년부터 2018년까지의 Machine learning 방법과 Quantile mapping의 기법을 비교 및 성능이 우수한 편이 보정 방법을 선택한 후 전망기간 동안의 GCM 성능의 우선순위를 선정하였다.

  • PDF

분위수 회귀분석을 이용한 동아시아 지역 극한기온의 장기 추세 분석 (Long-term Trend Analysis of Extreme Temperatures in East Asia Using Quantile Regression)

  • 김상욱;송강현;유영은;손석우;정수종
    • 한국기후변화학회지
    • /
    • 제9권2호
    • /
    • pp.157-169
    • /
    • 2018
  • This study explores the long?term trends of extreme temperatures of 270 observation stations in East Asia (China, Japan, and Korea) for 1961?2013. The 5th percentile of daily minimum temperatures (TN05%) and 95th percentile of daily maximum temperatures (TX95%), derived from the quantile regression, are particularly examined in term of their linear and nonlinear trends. The warming trends of TN05% are typically stronger than those of TX95% with more significant trends in winter than in summer for most stations. In both seasons, warming trends of TN05% tend to amplify with latitudes. The nonlinear trends, quantified by the $2^{nd}$?order polynomial fitting, exhibit different structures with seasons. While summer TN05% and TX95% were accelerated in time, winter TN05% underwent weakening of warming since the 2000s. These results suggest that extreme temperature trends in East Asia are not homogeneous in time and space.

베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발 (A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach)

  • 오랑치맥 솜야;김용탁;권영준;권현한
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석 (Factors affecting regional population of Korea using Bayesian quantile regression)

  • 김민영;오만숙
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.823-835
    • /
    • 2021
  • 지역별 인구의 분포에 영향을 미치는 요인의 파악은 국가의 사회, 경제, 문화적 발전 위한 정부의 인구정책 수립에 매우 중요하다. 본 연구에서는 2019년 인구주택 총조사 자료를 기반으로 대한민국 국토를 서울, 대도시, 기타지역의 세 지역으로 나누어 각 지역에서 소지역의 인구 크기에 영향을 미치는 요인들을 살펴 보았다. 인구 자료의 특징은 매우 비대칭적이며 이분산성을 가지므로 조건부 평균에 초점을 맞추는 일반적인 회귀모형 대신 분포에 대한 가정이 필요하지 않은 분위회귀모형을 사용하여 인구의 크기에 따라 변화하는 각 요인의 세부적인 영향을 살펴보았다. 분석결과 서울, 대도시, 기타지역에 따라 그리고 같은 지역 내에서도 세부 지역의 인구크기에 따라 요인의 영향이 매우 달라짐을 확인하였다. 이 결과들은 인구관련 변수들이 지역 마다 매우 이질적인 성질을 가지고 있으며 따라서 획일적인 인구정책이 아닌 지역 특성에 맞는 맞춤형 인구정책을 수립해야 할 필요성을 시사한다.