• Title/Summary/Keyword: quantile

Search Result 481, Processing Time 0.031 seconds

Analysis of the Changes in Rainfall Quantile according to the Increase of Data Period (자료기간 증가에 따른 확률강우량의 거동특성 분석)

  • An, Jae-Hyeon;Kim, Tae-Ung;Yu, Cheol-Sang;Un, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.569-580
    • /
    • 2000
  • To account for the influence of heavy storm in Korea by climate change like global warming, the frequency analyses for annual maximum rainfall sequence in 12 rainfall gauge stations are carried out. In order to analyze the temporal change, the rainfall quantile of each station is estimated by the 30-yr data period being moved from 1954 to 1998 with 1-yr lag. Through the analysis for l00-yr rainfall quantile it has been shown that the recent heavy storms increase comparing with storms in the past. From the additional estimating of the rainfall quantile of each station by the 30-yr data period being cumulated from 1954 to 1998 with 1-yr, the change of the probable rainfall by including the heavy storm duration is realized. When the hydraulic structures are determined, it is important to select the data size and necessary to reestimate the flood prevention capacity in existing river systems.ystems.

  • PDF

Quantile causality from dollar exchange rate to international oil price (원유가격에 대한 환율의 인과관계 : 비모수 분위수검정 접근)

  • Jeong, Kiho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.361-369
    • /
    • 2017
  • This paper analyzes the causal relationship between dollar exchange rate and international oil price. Although large literature on the relationship has accumulated, results are not unique but diversified. Based on the idea that such diversified results may be due to different causality at different economic status, we considers an approach to test the causal relationship at each quantile. This approach is different from the mean causality analysis widely employed by the existing literature of the causal relationship. In this paper, monthly data from May 1987 to 2013 is used for the causal analysis in which Brent oil price and Major Currencies Dollar Index (MCDI) are considered. The test method is the nonparametric test for causality in quantile suggested by Jeong et al. (2012). The results show that although dollar exchange rate causes oil price in mean, the causal relationship does not exist at most quantiles.

Inbreeding affected differently on observations distribution of a growth trait in Iranian Baluchi sheep

  • Binabaj, Fateme Bahri;Farhangfar, Seyyed Homayoun;Jafari, Majid
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.506-515
    • /
    • 2021
  • Objective: Initial consequence of inbreeding is inbreeding depression which impairs the performance of growth, production, health, fertility and survival traits in different animal breeds and populations. The effect of inbreeding on economically important traits should be accurately estimated. The effect of inbreeding depression on growth traits in sheep has been reported in many breeds. Based on this, the main objective of the present research was to evaluate the impact of inbreeding on some growth traits of Iranian Baluchi sheep breed using quantile regression model. Methods: Pedigree and growth traits records of 13,633 Baluchi lambs born from year 1989 to 2016 were used in this research. The traits were birth weight, weaning weight, six-month weight, nine-month weight, and yearling weight. The contribution, inbreeding and co-ancestry software was used to calculate the pedigree statistics and inbreeding coefficients. To evaluate the impact of inbreeding on different quantiles of each growth trait, a series of quantile regression models were fitted using QUANTREG procedure of SAS software. Annual trend of inbreeding was also estimated fitting a simple linear regression of lamb's inbreeding coefficient on the birth year. Results: Average inbreeding coefficient of the population was 1.63 percent. Annual increase rate of inbreeding of the flock was 0.11 percent (p<0.01). The results showed that the effect of inbreeding in different quantiles of growth traits is not similar. Also, inbreeding affected differently on growth traits, considering lambs' sex and type of birth. Conclusion: Quantile regression revealed that inbreeding did not have similar effect on different quantiles of growth traits in Iranian Baluchi lambs indicating that at a given age and inbreeding coefficient, lambs with different sex and birth type were not equally influenced by inbreeding.

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method (변동경향을 보존하는 편의보정기법을 이용한 우리나라의 평균 및 극한기온 모의결과 보정)

  • Jung, Hyun-Chae;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.205-219
    • /
    • 2015
  • In this study, the simulation results of temperature by regional climate model (Reg- CM4) over South Korea were corrected by Hempel et al. (2013)'s method (Hempel method), and evaluated with the observation data of 50 stations from Korea Meteorological Administration. Among the 30 years (1981~2010) of simulation data, 20 years (1981~2000) of simulation data were used as a training data, and the remnant 10 years (2001~2010) data were used for the evaluation of correction. In general, the Hempel method and parametric quantile mapping show a reasonable correction both in mean and extreme climate of temperature. As the results, the systematic underestimation of mean temperature was greatly reduced after bias correction by Hempel method. And the overestimation of extreme climate, such as the number of TN5% and freezing day, was significantly recovered. In addition to that, the Hempel method better preserved the temporal trend of simulated temperature than other bias correction methods, such as the quantile mapping. However, the overcorrection of the extreme climate related to the upper quantile, such as TX5% and hot days, resulted in the exaggeration of the simulation errors. In general, the Hempel method can reduce the systematic biases embedded in the simulation results preserving the temporal trend but it tends to overcorrect the non-linear biases, in particular, extreme climate related to the upper percentile.

Nonparametric estimation of conditional quantile with censored data (조건부 분위수의 중도절단을 고려한 비모수적 추정)

  • Kim, Eun-Young;Choi, Hyemi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2013
  • We consider the problem of nonparametrically estimating the conditional quantile function from censored data and propose new estimators here. They are based on local logistic regression technique of Lee et al. (2006) and "double-kernel" technique of Yu and Jones (1998) respectively, which are modified versions under random censoring. We compare those with two existing estimators based on a local linear fits using the check function approach. The comparison is done by a simulation study.

Herding in Fast Moving Consumer Group Sector: Equity Market Asymmetry and Crisis

  • BHARTI, Bharti;KUMAR, Ashish
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.39-49
    • /
    • 2020
  • This study empirically examines herd behavior for fast moving consumer goods (FMCG) sector stocks under varied market return conditions and the period during the global financial crisis and its aftermath. We examine the sample of stocks trading on the Nifty FMCG Index of the Indian equity market from January 2008 up to December 2018 using the dispersion measure of cross sectional absolute deviation and examine its relationship with the market return to explore herd phenomenon. Quantile regression estimate is used and the results of the study validate rational asset pricing models as the sector does not display herding. In contrast, anti-herd behavior at lower and median quantile values is observed. A possible reason can be the non-cyclical nature of the industry where investors rely more on the fundamentals rather than crowd chasing. We also findthe absence of herd phenomenon during the market asymmetries of bull and bear phases, extreme movements, the period of the global financial crisis, and afterward. We further examine herding under the impact of the information technology (IT) industry and conclude that significant return movements in IT sector impact dispersions in the FMCG industry. Also, there is a co-varying risk between the two sectors confirming the spillover in an integrated market.

Flood Risk Assessment Based on Bias-Corrected RCP Scenarios with Quantile Mapping at a Si-Gun Level (분위사상법을 적용한 RCP 시나리오 기반 시군별 홍수 위험도 평가)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.73-82
    • /
    • 2013
  • The main objective of this study was to evaluate Representative Concentration Pathways (RCP) scenarios-based flood risk at a Si-Gun level. A bias correction using a quantile mapping method with the Generalized Extreme Value (GEV) distribution was performed to correct future precipitation data provided by the Korea Meteorological Administration (KMA). A series of proxy variables including CN80 (Number of days over 80 mm) and CX3h (Maximum precipitation during 3-hr) etc. were used to carry out flood risk assessment. Indicators were normalized by a Z-score method and weighted by factors estimated by principal component analysis (PCA). Flood risk evaluation was conducted for the four different time periods, i.e. 1990s, 2025s, 2055s, and 2085s, which correspond to 1976~2005, 2011~2040, 2041~2070, and 2071~2100. The average flood risk indices based on RCP4.5 scenario were 0.08, 0.16, 0.22, and 0.13 for the corresponding periods in the order of time, which increased steadily up to 2055s period and decreased. The average indices based on RCP8.5 scenario were 0.08, 0.23, 0.11, and 0.21, which decreased in the 2055s period and then increased again. Considering the average index during entire period of the future, RCP8.5 scenario resulted in greater risk than RCP4.5 scenario.

Analysis of Future IDF Curves Using Various Bias Correction Method (다양한 편의보정 기법을 이용한 미래 IDF곡선의 분석)

  • Kim, Sangdan;Kim, Kyungmin;Lee, JeongHoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.323-323
    • /
    • 2018
  • 최근 기후변화에 대한 관심이 증대됨에 따라 미래 기후모델자료를 기반으로 연구가 다양하게 진행되고 있다. 기후변화가 적용된 자료는 미래 수자원관리, 방재를 위한 수공구조물의 설계 등 다양한 방식으로 실무에 적용되고 있다. 하지만 기후모델로부터 모의된 결과는 어느 정도 관측자료와 차이가 발생하게 되며, 이러한 계통적 오차는 모델 내부에서 해결하기가 쉽지 않다. 그렇기 때문에 기후모델로부터 모의된 결과를 보정하기 위해 편의보정 기법을 활용한다. 그리고 미래 기후모델자료는 불확실성을 내재하고 있기 때문에 다양한 편의보정 기법을 적용하여 불확실성의 범위를 확인해 보았다. 사용된 편의보정 기법으로는 Quantile Mapping(QM), Quantile Delta Mapping(QDM), Detrended Quantile Mapping(DQM), Delta Change Method(DCM)을 이용하였다. 편의보정에 적용한 확률분포형은 일반극치분포(GEV분포), Type-1 극치분포(Gumbel분포)를 사용하였다. GEV분포를 기본으로 하여 조건적으로 GEV분포를 사용할 수 없는 경우, Gumbel분포를 사용하였다. 본 연구에서는 독일의 전지구기후모델(Global Climate Model, GCM)인 MPI-ESM-LR에 RCP 8.5 사나리오를 강제장으로 하여 지역기후모델(Regional Climate Model, RCM)인 WRF를 이용하여 동역학적으로 다운스케일한 강우자료를 사용하였다. 강우자료 중에서 강릉, 인천, 부산, 목포지점에 해당하는 자료를 추출하여 연 최대 강우강도 시계열을 산정하고 4가지 편의보정 기법을 이용하여 편의보정을 하였다. 편의보정 수행된 연 최대 강우강도 시계열을 scale-invariance 기법으로 다운스케일하여 미래 IDF곡선을 유도한 뒤, 편의보정별로 유도한 IDF곡선의 비교를 통해 편의보정기법이 미래 IDF곡선에 미치는 영향을 분석하였다.

  • PDF

Quantile regression analysis: A novel approach to determine distributional changes in rainfall over Sri Lanka

  • S.S.K, Chandrasekara;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.228-232
    • /
    • 2017
  • Extreme hydrological events can cause serious threats to the society. Hence, the selection of probability distributions for extreme rainfall is a fundamental issue. For this reason, this study was focused on understanding possible distributional changes in annual daily maximum rainfalls (AMRs) over time in Sri Lanka using quantile regression. A simplified nine-category distributional-change scheme based on comparing empirical probability density function of two years (i.e. the first year and the last year), was used to determine the distributional changes in AMRs. Daily rainfall series of 13 station over Sri Lanka were analyzed for the period of 1960-2015. 4 distributional change categories were identified for the AMRs. 5 stations showed an upward trend in all the quantiles (i.e. 9 quantiles: from 0.05 to 0.95 with an increment of 0.01 for the AMR) which could give high probability of extreme rainfall. On the other hand, 8 stations showed a downward trend in all the quantiles which could lead to high probability of the low rainfall. Further, we identified a considerable spatial diversity in distributional changes of AMRs over Sri Lanka.

  • PDF