• Title/Summary/Keyword: quality of service (QoS) metrics

Search Result 46, Processing Time 0.022 seconds

DEVELOPMENT OF AUTONOMOUS QoS BASED MULTICAST COMMUNICATION SYSTEM IN MANETS

  • Sarangi, Sanjaya Kumar;Panda, Mrutyunjaya
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.342-352
    • /
    • 2021
  • Multicast Routings is a big challenge due to limitations such as node power and bandwidth Mobile Ad-hoc Network (MANET). The path to be chosen from the source to the destination node requires protocols. Multicast protocols support group-oriented operations in a bandwidth-efficient way. While several protocols for multi-cast MANETs have been evolved, security remains a challenging problem. Consequently, MANET is required for high quality of service measures (QoS) such infrastructure and application to be identified. The goal of a MANETs QoS-aware protocol is to discover more optimal pathways between the network source/destination nodes and hence the QoS demands. It works by employing the optimization method to pick the route path with the emphasis on several QoS metrics. In this paper safe routing is guaranteed using the Secured Multicast Routing offered in MANET by utilizing the Ant Colony Optimization (ACO) technique to integrate the QOS-conscious route setup into the route selection. This implies that only the data transmission may select the way to meet the QoS limitations from source to destination. Furthermore, the track reliability is considered when selecting the best path between the source and destination nodes. For the optimization of the best path and its performance, the optimized algorithm called the micro artificial bee colony approach is chosen about the probabilistic ant routing technique.

A Study of Security QoS(Quality of Service) Measurement Methodology for Network Security Efficiency (MOS(Mean Opinion Score)를 이용한 네트워크 보안 QoS(Quality of Service) 평가체계)

  • Kim, Jeom Goo;Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • Network security performance evaluation is a complex and diverse system environments, a single, specific performance measurements alone performance evaluation measure itself and the meaning of the reliability of the evaluation results do not limit the number of days only. In this paper, we propose a method to measure the security features of security, QoS measurement techniques using MOS satisfaction. MOS(Mean Opinion Score) Rating specifications for network security, QoS satisfaction and how to operate the development and operational model for future customer's satisfaction for information systems that can be used to evaluate the QoS measurement/analysis be utilized in the field. Objectified in the form of standards and performance measurement system provider (supplier development) and consumers(users) all the results available so that how to develop a system. Development is the development of information security features, the performance of these two features networking capabilities and a comprehensive evaluation of a three-gaeyoungyeok Correlating performance measurement methodology. Systematic measurement environment designed using the proposed methodology of this study, when the operating system is on the satisfaction of the security, QoS can be calculated. Forward In addition, a variety of performance metrics and performance measurement methods by extending the network security system satisfaction rating upgrade by the way will be.

Constellation Multi-Objective Optimization Design Based on QoS and Network Stability in LEO Satellite Broadband Networks

  • Yan, Dawei;You, Peng;Liu, Cong;Yong, Shaowei;Guan, Dongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1260-1283
    • /
    • 2019
  • Low earth orbit (LEO) satellite broadband network is a crucial part of the space information network. LEO satellite constellation design is a top-level design, which plays a decisive role in the overall performance of the LEO satellite network. However, the existing works on constellation design mainly focus on the coverage criterion and rarely take network performance into the design process. In this article, we develop a unified framework for constellation optimization design in LEO satellite broadband networks. Several design criteria including network performance and coverage capability are combined into the design process. Firstly, the quality of service (QoS) metrics is presented to evaluate the performance of the LEO satellite broadband network. Also, we propose a network stability model for the rapid change of the satellite network topology. Besides, a mathematical model of constellation optimization design is formulated by considering the network cost-efficiency and stability. Then, an optimization algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is provided for the problem of constellation design. Finally, the proposed method is further evaluated through numerical simulations. Simulation results validate the proposed method and show that it is an efficient and effective approach for solving the problem of constellation design in LEO satellite broadband networks.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

A Mechanism for Call Admission Control using User's Mobility Pattern in Mobile Multimedia Computin Environment (이동 멀티미디어 컴퓨팅 환경에서 사용자의 이동성 패턴을 이용한 호 수락 제어 메커니즘)

  • Choi, Chang-Ho;Kim, Sung-Jo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The most important issue in providing multimedia traffic on a mobile computing environments is to guarantee the mobile host(client) with consistent QoS(Quality of Service). However, the QoS negotiated between the client and network in one cell may not be honored due to client mobility, causing hand-offs between cells. In this paper, a call admission control mechanism is proposed to provide consistent QoS guarantees for multimedia traffics in a mobile computing environment. Each cell can reserve fractional bandwidths for hand-off calls to its adjacent cells. It is important to determine the right amount of reserved bandwidth for hand-off calls because the blocking probability of new calls may increase if the amount of reserved bandwidth is more than necessary. An adaptive bandwidth reservation based on an MPP(Mobility Pattern Profile) and a 2-tier cell structure has been proposed to determine the amount of bandwidth to be reserved in the cell and to control dynamically its amount based on its network condition. We also propose a call admission control based on this bandwidth reservation and "next-cell prediction" scheme using an MPP. In order to evaluate the performance of our call admission control mechanism, we measure the metrics such as the blocking probability of our call admission control mechanism, we measure the metrics such as the blocking probability of new calls, dropping probability of hand-off calls, and bandwidth utilization. The simulation results show that the performance of our mechanism is superior to that of the existing mechanisms such as NR-CAT1, FR-CAT1, and AR-CAT1.

Comprehensive Investigations on QUEST: a Novel QoS-Enhanced Stochastic Packet Scheduler for Intelligent LTE Routers

  • Paul, Suman;Pandit, Malay Kumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.579-603
    • /
    • 2018
  • In this paper we propose a QoS-enhanced intelligent stochastic optimal fair real-time packet scheduler, QUEST, for 4G LTE traffic in routers. The objective of this research is to maximize the system QoS subject to the constraint that the processor utilization is kept nearly at 100 percent. The QUEST has following unique advantages. First, it solves the challenging problem of starvation for low priority process - buffered streaming video and TCP based; second, it solves the major bottleneck of the scheduler Earliest Deadline First's failure at heavy loads. Finally, QUEST offers the benefit of arbitrarily pre-programming the process utilization ratio.Three classes of multimedia 4G LTE QCI traffic, conversational voice, live streaming video, buffered streaming video and TCP based applications have been considered. We analyse two most important QoS metrics, packet loss rate (PLR) and mean waiting time. All claims are supported by discrete event and Monte Carlo simulations. The simulation results show that the QUEST scheduler outperforms current state-of-the-art benchmark schedulers. The proposed scheduler offers 37 percent improvement in PLR and 23 percent improvement in mean waiting time over the best competing current scheduler Accuracy-aware EDF.

A Study on Designing Method of Framework for NGN QoS Management (NGN 운용과정의 QoS 관리를 위한 프레임워크 설계방법)

  • Noh, Si-Choon;Bang, Kee-Chun
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • The level of transference of NGN is beginning as the operation of Access Gateway in korea at present, but NGN will keep developing continuously to the NGN integrated network until 2010. This research is finding the meaning and assignment of NGN QoS to deduct how to manage the control system and presenting the QoS control process and trial framework. The trial framework is the modeling of the QoS measurement metrics, the measurement time schedule, the section, hierarchy, instrument, equipment and method of measurement and the series of cycle & the methodology about analysis of the result of measurement. The objective standard of quality in communication service is guaranteed not by itself but by controlling and measuring continuously. Especially it's very important time to maintain the research about NGN QoS measurement and control because the big conversion of new network technology paradigm is now spreading.

  • PDF

MARS: Multiple Access Radio Scheduling for a Multi-homed Mobile Device in Soft-RAN

  • Sun, Guolin;Eng, Kongmaing;Yin, Seng;Liu, Guisong;Min, Geyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • In order to improve the Quality-of-Service (QoS) of latency sensitive applications in next-generation cellular networks, multi-path is adopted to transmit packet stream in real-time to achieve high-quality video transmission in heterogeneous wireless networks. However, multi-path also introduces two important challenges: out-of-order issue and reordering delay. In this paper, we propose a new architecture based on Software Defined Network (SDN) for flow aggregation and flow splitting, and then design a Multiple Access Radio Scheduling (MARS) scheme based on relative Round-Trip Time (RTT) measurement. The QoS metrics including end-to-end delay, throughput and the packet out-of-order problem at the receiver have been investigated using the extensive simulation experiments. The performance results show that this SDN architecture coupled with the proposed MARS scheme can reduce the end-to-end delay and the reordering delay time caused by packet out-of-order as well as achieve a better throughput than the existing SMOS and Round-Robin algorithms.

Hybrid Monitoring Scheme for End-to-End Performance Enhancement of Real-time Media Transport (실시간 미디어 전송의 종단간 성능 향상을 위한 혼성 모니터링 기법)

  • Park Ju-Won;Kim JongWon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10B
    • /
    • pp.630-638
    • /
    • 2005
  • As real-time media applications based on IP multicast networks spread widely, the end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) group collaboration tool based on multi-Party real-time media services, a hybrid monitoring scheme that can monitor the status of both multicast network and node system is investigated. It combines active monitoring and passive monitoring approaches to measure multicast network. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks application-layer metrics (i.e., user traffic condition by analyzing RTCP packets). In addition, it measures node system metrics from system API. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.

A Designing Method of Network Quality Assurance Test Bed Design under Next-generation Network Environment (NGN(Next Generation Network)의 네트워크 품질 보증을 위한 테스트베드 모델 설계)

  • Chung, Ji Moon
    • Journal of Digital Contents Society
    • /
    • v.13 no.4
    • /
    • pp.625-629
    • /
    • 2012
  • This paper is presented to prepare NGN quality assurance management process under the quality system test methodology. The process should be drawn for NGN quality measurement framework of multimedia traffic. NGN test bed management process model are QoS measurement metrics, measurement interval meter above, and measuring tools, measuring equipment, measurement methods and measurement results from a series of processes for the analysis and methodology. This model, NGN quality assurance activities should be utilized in the future. Quality target level only when themselves constantly measured and managed, does not guarantee the communication quality of service. It is sensitive to the importance of NGN network technology paradigm for research on quality management in the NGN.