• Title/Summary/Keyword: quadruped robot

Search Result 145, Processing Time 0.027 seconds

GA Based Locomotion Method for Quadruped Robot with Waist Joint to Walk on the Slop (허리 관절을 갖는 4족 로봇의 GA 기반 경사면 보행방법)

  • Choi, Yoon-Ho;Kim, Dong-Sub;Kim, Guk-Hwa
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1665-1674
    • /
    • 2013
  • In this paper, we propose a genetic algorithm(GA) based locomotion method of a quadruped robot with waist joint, which makes a quadruped robot walk on the slop efficiently. In the proposed method, we first derive the kinematic model of a quadruped robot with waist joint and then set the gene and the fitness function for GA. In addition, we determine the best attitude for a quadruped robot and the landing point of a foot in the walk space, which has the optimal energy stability margin(ESM). Finally, we verify the effectiveness of the proposed method by comparing with the performance of the previous method through the computer simulations.

The Motion Control of a Quadruped Working Robot Using Wireless Sensor Network (무선 센서 네트워크가 탑재된 사족 보행로봇 제어)

  • Seo, Kyu-Tae;Kim, Ki-Woo;Sim, Jae-Yang;Oh, Jun-Young;Lim, Sung-Duk;Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.499-501
    • /
    • 2004
  • This paper deals with the implementation of a quadruped working robot using wireless sensor network with TinyOS. It is often required to install real time OS and wireless network in the mobile robot field since robots work alone without human intervention and also exchanging their information between robot systems. The suggested controller utilizes a built-in wireless network OS and makes the variance action related with human-kindly motions for a quadruped walking robot. In addition, a kinematics analysis of its structure and control architecture of robot system is suggested and verified the usefulness through the real experiment.

  • PDF

Study on a Quadruped Walking Robot with Omni-directional Characteristics (전방향 특성을 갖는 사족보행 로봇에 관한 연구)

  • Kim, Hee-Guk;Lee, Jun-Yong;Song, Nak-Yoon;Cho, Hwang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.815-819
    • /
    • 1996
  • In this work, regular rotational gaits of the quadruped crawling robot required to change its moving direction without affecting be its orientation and its static stability margin are studied. The regular rotational gaits provide the quadruped crawling robot with omnidirectional characteristics. However, the ideal foothold region for each of legs of the quadruped crawling robot is assumed for simplicity. Nonetheless, it is expected that the results of this paper will provide the insight for both design of legs of the crawling robot with omnidirectional characteristics as well as its operation of the crawling robot system with specified stability margin.

  • PDF

Unified Strategy for Quadruped Walking Robot in Unstructured Environment

  • Kang, Tae-Hun;Son, Tae-Young;Kim, Hyung-Seok;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.639-644
    • /
    • 2003
  • An unstructured environment requires a robot to possess outstanding mobility and advanced control algorithms since there exist complicated configurations such as obstacle, uneven surface, etc. Especially, when a quadruped robot walks in these environments, obstacles in the walking route will obstruct the walking or may give rise to a serious trouble. In this paper, we introduce a strategy for the stable walking in unstructured environment. The proposed strategy consists of two control algorithms. One is a collision{free algorithm to avoid obstacles and the other is an algorithm to overcome any obstacle. These are based on the obstacle detection method and a shape reconstruction algorithm, Which algorithms are described in detail. In addition, the validity of these algorithms have been demonstrated through experiments using a quadruped walking robot called "MRWALLSPECT III(Multifunctional Robot for Wall inSPECTion version 3 )".

  • PDF

The Efficient Motion Teaching Method of Quadruped Robot Using Graphic Simulator and Physics Engine (그래픽 시뮬레이터와 물리엔진을 이용한 효과적인 4족 보행로봇의 모션티칭 방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chan-Goo;Yi, Soo-Yeong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.156-158
    • /
    • 2009
  • A graphic simulator is efficient to see what will happen to the target robot. But it is not exactly same as the real world. Because there are so many physical laws to be concerned. In this paper, we propose a simulator with physics engine to create motions for quadruped robot. It is not only to show more real simulations but also to be more efficient for teaching motions to quadruped robot. To solve the quadruped robot's dynamics or inverse kinematics, It takes much times and hard effort. Using physics engine make it easy to setup motions without calculating inverse kinematics or dynamics.

  • PDF

The Energy Efficiency of Walking Method for Quadruped Walking Robot (4 족 보행로봇의 보행방법에 대한 에너지효율)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.882-887
    • /
    • 2008
  • In this paper, the dependency of energy efficiency on the walking/running pattern and the walking/running period is analyzed though simulations of walk, trot and gallop. A quadruped animal has its own original features in the walking pattern and the walking period for adaptation to the environment. The robot model used in the simulations has three active joints and one passive spring-loaded joint at each leg, which is based on the actual quadruped robot, HUNTER (Hanyang UNiversity TEtrapod Robot), developed in the lab. Also included is the dependency of energy efficiency on the walking period in trot.

  • PDF

Fault Tolerant Straight-Line Gaits of a Quadruped Robot with Feet of Flat Shape (평판 발을 가지는 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2012
  • This paper proposes fault tolerant gaits of a quadruped robot with feet of flat shape. Fault tolerant gaits make it possible for a legged robot to continue static walking against a leg failure. In the previous researches, it was assumed that a legged robot had feet that have point contact with the surface. When the robot is endowed with feet having flat shape, fault tolerant gaits can show better performance compared with the former gaits, especially in terms of the stride length and gait stability. In this paper, fault tolerant gaits of a quadruped robot against a locked joint failure are addressed in straight-line motion and crab walking, respectively.

Designing Fault-Tolerant Gaits for Quadruped Robots Using Energy Stability Margins (에너지 안정여유도를 이용한 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.319-326
    • /
    • 2006
  • This paper proposes a novel fault-tolerant gait for Quadruped robots using energy stability margins. The previously developed fault-tolerant gaits for quadruped robots have a drawback of having marginal stability margin, which may lead to tumbling. In the process of tumbling, the potential energy of the center of gravity goes through a maximum. The larger the difference between the potential energy of the center of gravity of the initial position and that of this maximum, the less the robot tumbles. Hence this difference of potential energy, dubbed as Energy Stability Margin (ESM), can be regarded as the stability margin. In this paper, a novel fault-tolerant gait is presented which gives positive ESM to a quadruped robot suffering from a locked joint failure. Positive ESM is obtained by adjusting foot positions between leg swing sequences. The advantage of the proposed fault-tolerant gait is demonstrated in a case study where a quadruped robot with a failed leg walks on a even slope.

Biologically Inspired Approach for the Development of Quadruped Walking Robot (사족보행 로봇의 개발을 위한 생체모방적 접근)

  • Kang Tae-Hun;Song Hyun-Sup;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.307-314
    • /
    • 2006
  • In this paper, we present a comprehensive study for the development of quadruped walking robot. To understand the walking posture of a tetrapod animal, we begin with a careful observation on the skeletal system of tertapod animals. From taking a side view of their skeletal system, it is noted that their fore limbs and hind limbs perform characteristic roles during walking. Moreover, the widths of footprints and energy efficiency in walking have a close relationship through taking a front view of their walking posture. According to these observations, we present a control method where the kinematical solutions are not necessary because we develop a new rhythmic gait pattern for the quadruped walking robot. Though the proposed control method and rhythmic pattern are simple, they can provide the suitable motion planning for the robot since the resultant movement is based on the animal's movements. The validity of the proposed idea is demonstrated through dynamic simulations.

Walking test of a quadruped robot with weight balancing oscillator (무게평형진자를 가진 4족 로봇의 보행 실험)

  • 유재명;오상관;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.446-449
    • /
    • 2002
  • Quadruped walking robot requires dynamic control to keep its stability in high speed walking. To keep its walking stability by control of only legs' Joint angle lowers energy efficiency. It is known that an animal or a human use the moving of the mass center of one's upper body to keep the stability. We have developed a quadruped walking robot with weight balancing oscillator that have high energy efficiency. In this study, walking tests are performed for the robot to verify the validity of the weight balancing oscillator.

  • PDF