• Title/Summary/Keyword: quadrilateral

Search Result 280, Processing Time 0.019 seconds

DEVELOPMENT OF A HIGH-ORDER NUMERICAL METHOD IN THE QUADRILATERAL ADAPTIVE GRIDS (사각형 적응 격자 고차 해상도 수치 기법의 개발)

  • Chang, S.M.;Morris, P.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.47-50
    • /
    • 2006
  • In the aeroacoustic application of computational fluid dynamics, the physical phenomena like the crackle in the unsteady compressible jets should be based on very time-accurate numerical solution. The accuracy of the present numerical scheme is extended to the fifth order, using the WENO filter to the sixth-order central difference computation. However, the computational capacity is very restricted by the environment of computational power, so therefore the quadrilateral adaptive grids technique is introduced for this high-order accuracy scheme. The first problem is the multi-dimensional interpolation between fine and coarse grids. Some general benchmark problems are solved to show the effectiveness of this method.

  • PDF

Shape Finding and Stress Analyses of Tension Membrane Structures by using 4-node Isoparametric Elements (4월점 등매개요소를 이용한 인장막구조(引張膜構造)의 형상해석(形狀解析) 및 응력해석(應力解析))

  • Lee, Kyung-Soo;Lee, Hyung-Hoon;Moon, Jeong-Ho;Han, Sang-Eul
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.222-229
    • /
    • 2004
  • This study purports to analyze equally stressed surfaces in tension-membrane structures through a geometrically nonlinear approach. It adopts the formulation of a 4-node quadrilateral isoparametric plane stress element considering the orthotropic characteristic of membrane textures. Tension structures, which include cables and tension membranes, such as a cable dome initially exhibit unstable conditions because no initial internal stiffness such as bending stiffness is present. Such a structural system requires prestressing to the tension members to attain a stable state. A tension-membrane structure retains a stable three dimensional curved surface as a structural shape. This analytical process for finding the geometry is referred to as Shape Finding Analysis. In order to assess the validity of this study, we examine equally stressed surfaces of saddle and catenary shape shell structures and carry out pertinent stress analyses

  • PDF

Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method

  • Civalek, Omer;Ozturk, Baki
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.279-299
    • /
    • 2010
  • A methodology on application of the discrete singular convolution (DSC) technique to the free vibration analysis of thin plates with curvilinear quadrilateral platforms is developed. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. The DSC procedures are then applied to discretization of the transformed set of governing equations and boundary conditions. For demonstration of the accuracy and convergence of the method, some numerical examples are provided on plates with different geometry such as elliptic, trapezoidal having straight and parabolic sides, sectorial, annular sectorial, and plates with four curved edges. The results obtained by the DSC method are compared with those obtained by other numerical and analytical methods. The method is suitable for the problem considered due to its generality, simplicity, and potential for further development.

Alternative plate finite elements for the analysis of thick plates on elastic foundations

  • Ozgan, K.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.69-86
    • /
    • 2007
  • A four-noded plate bending quadrilateral (PBQ4) and an eight-noded plate bending quadrilateral (PBQ8) element based on Mindlin plate theory have been adopted for modeling the thick plates on elastic foundations using Winkler model. Transverse shear deformations have been included, and the stiffness matrices of the plate elements and the Winkler foundation stiffness matrices are developed using Finite Element Method based on thick plate theory. A computer program is coded for this purpose. Various loading and boundary conditions are considered, and examples from the literature are solved for comparison. Shear locking problem in the PBQ4 element is observed for small value of subgrade reaction and plate thickness. It is noted that prevention of shear locking problem in the analysis of the thin plate is generally possible by using element PBQ8. It can be concluded that, the element PBQ8 is more effective and reliable than element PBQ4 for solving problems of thin and thick plates on elastic foundations.

End Effects of Thin-Walled Beams with General Quadrilateral Cross Sections (일반 사각 단면 형상을 갖는 박판보의 끝단효과에 관한 연구)

  • Kim, Jin-Hong;Kim, Yun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2191-2201
    • /
    • 2000
  • End effects due to sectional deformations of thin-walled beams with closed cross section are analysed by a one-dimensional theory. In particular, end effects associated with warping (out of plane m otion) and distortion (in plane motion) are investigated. The exact solutions as a vector form are newly derived to reveal slowly-decaying nature of the end effects in a thin-walled beam loaded by a couple. Several examples of thin-walled beams under various loading conditions indicate that the local end effect zone due to warping and distortion is approximately ten times the typical beam width.

4절점 응축 셸 요소를 이용한 복합재 적층 구조물의 전단응력 예측

  • Choe, Nu-Ri;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2292-2301
    • /
    • 2000
  • We propose an accurate and efficient estimation method of transverse shear stresses for analysis and design of laminated composite structures by 4-node quadrilateral degenerated shell elements. To get proper distributions of transverse shear stresses in each layer, we use 3-dimensional equilibrium equations instead of constitutive equations with shear correction factors which vary diversely according to the shapes of shell sections. Three dimensional equilibrium equations are integrated through the thickness direction with complete polynomial membrane stress fields, which are recovered by REP (Recovery by Equilibrium in Patches) recovery method. The 4-node quadrilateral degenerated shell element used in this paper has drilling degrees of freedom and shear stresses derived from assumed strain fields that are set up at natural coordinate systems. The numerical results demonstrate that the proposed estimation method attains reasonable accuracy and efficiency compared with other methods and FE analysis using 4-node degenerated shell elements.

A HYBRID TREFFTZ FLAT SHELL ELEMENT

  • Choo, Yeon-Seok;Choi, Noo-Ri;Lee, Byung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.402-407
    • /
    • 2008
  • We suggest a linear elastic flat shell element based on the HT(hybrid Trefftz) method. We formulate the membrane part of the proposed element as an HT plane element with the drilling DOF. For the bending part, we developed a thick HT plate element that can represent transverse shear deformations accurately. Because we derive both the membrane and the bending parts consistently using the HT functional, we can easily construct the triangular and the quadrilateral elements in a unified way. In addition, warping of quadrilateral element is compensated by force and moment equilibrium equations. We evaluate the performance of the new element in terms of accuracy and convergence.

  • PDF

Coupled Line Cameras as a New Geometric Tool for Quadrilateral Reconstruction (사각형 복원을 위한 새로운 기하학적 도구로서의 선분 카메라 쌍)

  • Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • We review recent research results on coupled line cameras (CLC) as a new geometric tool to reconstruct a scene quadrilateral from image quadrilaterals. Coupled line cameras were first developed as a camera calibration tool based on geometric insight on the perspective projection of a scene rectangle to an image plane. Since CLC comprehensively describes the relevant projective structure in a single image with a set of simple algebraic equations, it is also useful as a geometric reconstruction tool, which is an important topic in 3D computer vision. In this paper we first introduce fundamentals of CLC with reals examples. Then, we cover the related works to optimize the initial solution, to extend for the general quadrilaterals, and to apply for cuboidal reconstruction.

Automated Mesh Generation For Finite Element Analysis In Metal Forming (소성 가공의 유한 요소 해석을 위한 자동 요소망 생성)

  • 이상훈;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.17-23
    • /
    • 1997
  • In the two-dimensional Finite Element Method for forming simulation, mesh generation and remeshing process are very significant. In this paper, using the modified splitting mesh generation algorithm, we can overcome the limitation of existing techniques and acquire mesh, which has optimal mesh density. A modified splitting algorithm for automatically generating quadrilateral mesh within a complex domain is described. Unnecessary meshing process for density representation is removed. Especially, during the mesh generation with high gradient density like as shear band representation, the modified mesh density scheme, which will generate quadrilateral mesh with the minimized error, which takes effect on FEM solver, is introduced.

  • PDF

A technique to avoid aspect-ratio locking in QUAD8 element for extremely large aspect-ratios

  • Rajendran, S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.633-648
    • /
    • 2011
  • This paper investigates the aspect-ratio locking of the isoparametric 8-node quadrilateral (QUAD8) element. An important finding is that, if finite element solution is carried out with in exact arithmetic (i.e., with no truncation and round off errors), the locking tendency of the element is completely avoided even for aspect-ratios as high as 100000. The current finite element codes mostly use floating point arithmetic. Thus, they can only avoid this locking for aspect-ratios up to 100 or 1000. A novel method is proposed in the paper to avoid aspect-ratio locking in floating point computations. In this method, the offending terms of the strain-displacement matrix (i.e., $\mathbf{B}$-matrix) are multiplied by suitable scaling factors to avoid ill-conditioning of stiffness matrix. Numerical examples are presented to demonstrate the efficacy of the method. The examples reveal that aspect-ratio locking is avoided even for aspect-ratios as high as 100000.