• 제목/요약/키워드: quadrature domain

검색결과 66건 처리시간 0.022초

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Multi-band Approach to Deep Learning-Based Artificial Stereo Extension

  • Jeon, Kwang Myung;Park, Su Yeon;Chun, Chan Jun;Park, Nam In;Kim, Hong Kook
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.398-405
    • /
    • 2017
  • In this paper, an artificial stereo extension method that creates stereophonic sound from a mono sound source is proposed. The proposed method first trains deep neural networks (DNNs) that model the nonlinear relationship between the dominant and residual signals of the stereo channel. In the training stage, the band-wise log spectral magnitude and unwrapped phase of both the dominant and residual signals are utilized to model the nonlinearities of each sub-band through deep architecture. From that point, stereo extension is conducted by estimating the residual signal that corresponds to the input mono channel signal with the trained DNN model in a sub-band domain. The performance of the proposed method was evaluated using a log spectral distortion (LSD) measure and multiple stimuli with a hidden reference and anchor (MUSHRA) test. The results showed that the proposed method provided a lower LSD and higher MUSHRA score than conventional methods that use hidden Markov models and DNN with full-band processing.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

${H^1}({\Omega})$-NORM ERROR ANALYSIS UNDER NUMERICAL QUADRATURE RULES BY THE P-VERSION OF THE FINITE ELEMENT METHOD

  • Kim, Ik-Sung;Kim, Chang-Geun;Song, Man-Suk
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.467-489
    • /
    • 1994
  • Let $\Omega$ be a closed and bounded polygonal domain in R$^2$, or a closed line segment in R$^1$ with boundary $\Gamma$, such that there exists an invertible mapping T : $\Omega$ \longrightarrow $\Omega$ with the following correspondence: x$\in$$\Omega$ ↔ x = T(x) $\in$$\Omega$, (1.1) and (1.2) t $\in$ U$\sub$p/($\Omega$) ↔ t = to T$\^$-1/ $\in$ U$\sub$p/($\Omega$), where $\Omega$ denotes the corresponding reference elements I = [-1,1] and I ${\times}$ I in R$^1$ and R$^2$ respectively, (1.3) U$\sub$p/($\Omega$) = {t : t is a polynomial of degree $\leq$ p in each variable on $\Omega$}, and (1.4) U$\sub$p/($\Omega$) = {t : t = to T $\in$ U$\sub$p/($\Omega$)}.(omitted)

  • PDF

마이크로스트립 전이를 이용하는 CPW Branch-line 커플러 (Novel Quadrature Branch-line Coupler Using CPW-to-Microstrip Transitions)

  • 이중호;이해영
    • 대한전자공학회논문지TC
    • /
    • 제37권5호
    • /
    • pp.10-16
    • /
    • 2000
  • 본 논문에서는 초고주파 집적회로에서 일반적으로 사용되는 90。 branch-line 커플러를 CPW와 마이크로 스트립의 다른 두 전송선이 조합된 형태로 구성하였다. 4포트 회로망에 대해서 even-odd 모드 해석 방법을 통해서 전송선들의 적절한 특성 임피던스를 결정하고, 효과적으로 전송선의 특성을 예측할 수 있는 유한 차분법 시간 영역 방법으로 전체 구조에 대해서 계산하였다 그리고 실제 제작 및 측정을 통해서 계산과 측정 결과가 잘 일치함을 화인하였다. 새롭게 제안된 커플러는 기존의 커플러의 비해 동작 주파수에서 두 출력 포트로 전력이 균등히 분배되고, 위상차가 90。로 유지되는 등 매우 우수한 성능을 가짐을 확인하였다.

  • PDF

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석 (Explicit Transient Simulation of SH-waves Using a Spectral Element Method)

  • 윤승욱;강준원
    • 한국전산구조공학회논문집
    • /
    • 제31권2호
    • /
    • pp.87-95
    • /
    • 2018
  • 이 논문에서는 스펙트럴 요소법과 외연적 시간적분법을 이용해 SH파의 전파 거동을 계산하는 수치해석 기법을 제시한다. 2차원 영역에서의 탄성파 해석을 위해 해석영역을 유한 영역으로 한정하고 파동이 반사되지 않도록 수치적 파동흡수 경계조건인 perfectly matched layer(PML)를 도입하였다. PML이 포함된 시간영역 파동방정식의 유한요소해법을 위해 스펙트럴 요소법을 적용하였고 Legendre- Gauss-Lobatto 수치적분법을 사용하여 질량행렬을 대각화하였다. 2차 미분방정식 시스템의 파동방정식을 1차 미분방정식 시스템으로 변환하였고 병렬화를 통한 탄성파 해석 성능의 최적화를 위해 외연적 시간적분법인 4차 Runge-Kutta 방법을 이용해 해석영역에서의 변위응답을 계산하였다. 2차원 해석영역에서 SH파의 전파 거동을 계산하는 수치예제를 통해 제시한 외연적 스펙트럴 요소법의 정확성을 검증하였고 PML로 인한 반사파의 감쇠효과를 확인하였다. 외연적 시간적분법을 통한 탄성파 해석 기법은 3차원 영역과 같은 대규모 문제에서의 탄성파 수치해석을 효율적으로 수행할 수 있을 것으로 기대된다.

OFDM 기반 저전력 통신 시스템 설계와 성능 평가 (Design and Performance Evaluation of OFDM-Based Low Power Communication System)

  • 최재훈;유흥균
    • 한국전자파학회논문지
    • /
    • 제22권10호
    • /
    • pp.951-959
    • /
    • 2011
  • 저전력 변조 방식은 근거리 통신 시스템에서 전력 효율을 높이기 위하여 필요한 요소이다. 본 논문은 저전력 변조를 위해 제안된 PSSK(Phase Silence Shift Keying), PSPM(Phase Shift Position Modulation), QAPM(Quadrature Amplitude Position Modulation) 방식들을 주파수 측에서의 mapping을 통하여 OFDM 전송을 하고 그 성능을 분석한다. PSSK, PSPM과 QAPM 변조 방식은 기존의 PSK, QAM 변조 방식에 비하여 대역 효율은 떨어지지만, 전송효율을 높인 변조 방식으로 PPM 방식을 이용하여 신호의 주기를 나누고, PSK 혹은 QAM 심볼을 배치한다. 이렇게 배치함으로써 심볼 주기 이외의 구간은 0을 배치할 수 있게 되고 그에 따라 전력 효율을 높이는 방식이다. PPM 방식을 이용한 변조 방식은 PSK보다 높은 전력 효율과 FSK보다 높은 대역 효율을 얻을 수 있으며, 전체적인 성능은 FSK와 PSK의 사이에 위치하게 된다. OFDM 전송 방식은 기존의 단일 반송파 전송 방식보다 대역 효율을 높일 수 있다. 이 논문에서는 PSSK와 PSPM, QAPM과 같은 저전력 변조 방식을 OFDM 방식에 적용하기 위한 주파수축에서의 부반송파 mapping 방식을 제안한다. 또한, 제안된 mapping을 통하여 전송하였을 때의 BER 성능과 단일 반송파 전송을 통한 BER 성능을 비교하며, 기존의 방식과의 PAPR 성능을 비교한다.

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • 한국지구과학회지
    • /
    • 제34권5호
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.