• Title/Summary/Keyword: quadratic term

Search Result 92, Processing Time 0.021 seconds

A Research on Yield Prediction of Mixed Pastures in Korea via Model Construction in Stages (혼파초지에서 모형의 단계적 적용을 통한 수량예측 연구)

  • Oh, Seung Min;Kim, Moon Ju;Peng, Jinglun;Lee, Bae Hun;Kim, Ji Yung;Kim, Byong Wan;Jo, Mu Hwan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.80-91
    • /
    • 2017
  • The objective of this study was to select a model showing high-levels of interpretability which is high in R-squared value in terms of predicting the yield in the mixed pasture using the factors of fertilization, seeding rate and years after pasture establishment in steps, as well as the climate as a basic factor. The processes of constructing the yield prediction model for the mixed pasture were performed in the sequence of data collection (forage and climatic data), preparation, analysis, and model construction. Through this process, six models were constructed after considering climatic variables, fertilization management, seeding rates, and periods after pasture establishment years in steps, thereafter the optimum model was selected through considering the coincidence of the models to the forage production theories. As a result, Model VI (R squared = 53.8%) including climatic variables, fertilization amount, seeding rates, and periods after pasture establishment was considered as the optimum yield prediction model for mixed pastures in South Korea. The interpretability of independent variables in the model were decreased in the sequence of climatic variables(24.5%), fertilization amount(17.8%), seeding rates(10.7%), and periods after pasture establishment(0.8%). However, it is necessary to investigate the reasons of positive correlation between dry matter yield and days of summer depression (DSD) by considering cultivated locations and using other cumulative temperature related variables instead of DSD. Meanwhile the another research about the optimum levels of fertilization amounts and seeding rates is required using the quadratic term due to the certain value-centered distribution of these two variables.

An Alternative Model for Determining the Optimal Fertilizer Level (수도(水稻) 적정시비량(適正施肥量) 결정(決定)에 대한 대체모형(代替模型))

  • Chang, Suk-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 1980
  • Linear models, with and without site variables, have been investigated in order to develop an alternative methodology for determining optimal fertilizer levels. The resultant models are : (1) Model I is an ordinary quadratic response function formed by combining the simple response function estimated at each site in block diagonal form, and has parameters [${\gamma}^{(1)}_{m{\ell}}$], for m=1, 2, ${\cdots}$, n sites and degrees of polynomial, ${\ell}$=0, 1, 2. (2) Mode II is a multiple regression model with a set of site variables (including an intercept) repeated for each fertilizer level and the linear and quadratic terms of the fertilizer variables arranged in block diagonal form as in Model I. The parameters are equal to [${\beta}_h\;{\gamma}^{(2)}_{m{\ell}}$] for h=0, 1, 2, ${\cdots}$, k site variable, m=1, 2, ${\cdots}$ and ${\ell}$=1, 2. (3) Model III is a classical response surface model, I. e., a common quadratic polynomial model for the fertilizer variables augmented with site variables and interactions between site variables and the linear fertilizer terms. The parameters are equal to [${\beta}_h\;{\gamma}_{\ell}\;{\theta}_h$], for h=0, 1, ${\cdots}$, k, ${\ell}$=1, 2, and h'=1, 2, ${\cdots}$, k. (4) Model IV has the same basic structure as Mode I, but estimation procedure involves two stages. In stage 1, yields for each fertilizer level are regressed on the site variables and the resulting predicted yields for each site are then regressed on the fertilizer variables in stage 2. Each model has been evaluated under the assumption that Model III is the postulated true response function. Under this assumption, Models I, II and IV give biased estimators of the linear fertilizer response parameter which depend on the interaction between site variables and applied fertilizer variables. When the interaction is significant, Model III is the most efficient for calculation of optimal fertilizer level. It has been found that Model IV is always more efficient than Models I and II, with efficiency depending on the magnitude of ${\lambda}m$, the mth diagonal element of X (X' X)' X' where X is the site variable matrix. When the site variable by linear fertilizer interaction parameters are zero or when the estimated interactions are not important, it is demonstrated that Model IV can be a reasonable alternative model for calculation of optimal fertilizer level. The efficiencies of the models are compared us ing data from 256 fertilizer trials on rice conducted in Korea. Although Model III is usually preferred, the empirical results from the data analysis support the feasibility of using Model IV in practice when the estimated interaction term between measured soil organic matter and applied nitrogen is not important.

  • PDF

Statistical Modelling and Forecasting of Cervix Cancer Cases in Radiation Oncology Treatment: A Hospital Based Study from Western Nepal

  • Sathian, Brijesh;Fazil, Abul;Sreedharan, Jayadevan;Pant, Sadip;Kakria, Anjali;Sharan, Krishna;Rajesh, E.;Vishrutha, K.V.;Shetty, Soumya B.;Shahnavaz, Shameema;Rao, Jyothi H.;Marakala, Vijaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2097-2100
    • /
    • 2013
  • Background: To estimate the numbers and trends in cervix cancer cases visiting the Radiotherapy Department at Manipal Teaching Hospital, Pokhara, Nepal, statistical modelling from retrospective data was applied. Materials and Methods: A retrospective study was carried out on data for a total of 159 patients treated for cervix cancer at Manipal Teaching Hospital, Pokhara, Nepal, between $28^{th}$ September 2000 and $31^{st}$ December 2008. Theoretical statistics were used for statistical modelling and forecasting. Results: Using curve fitting method, Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power and Exponential growth models were validated. Including the constant term, none of the models fit the data well. Excluding the constant term, the cubic model demonstrated the best fit, with $R^2$=0.871 (p=0.004). In 2008, the observed and estimated numbers of cases were same (12). According to our model, 273 patients with cervical cancer are expected to visit the hospital in 2015. Conclusions: Our data predict a significant increase in cervical cancer cases in this region in the near future. This observation suggests the need for more focus and resource allocation on cervical cancer screening and treatment.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Evaluation and Numerical Model of Hydraulic Resistance by Hanging Aquaculture Facilities (수하식 양식시설에 의한 운수저항의 평가와 수치모형)

  • LEE Jong Sup;PARK Il Heum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.607-623
    • /
    • 1995
  • A numerical model of hydraulic resistance by hanging aquaculture facilities is developed and applied to a model basin and a field. A drag stress term formulated by the quadratic law of drag force is introduced Tn the equations of motion for a two-dimensional depth-averaged flow. In the model basin, numerical experiments ave tarried out for the various shape of obstructions, string density and layout of facilities etc.. The flow pattern around the facilities is affected sensitively by the density of string and the layout of facilities. On the other hand, the velocity decay due to the hanging oyster aquaculture facilities is observed in Kamak bay, where the maximum velcocity decay rate is $25\%$ in spring tide. The model is also applied to the field, Kamak bay. The velocity decay rate in the model is comparable with the field measurement data. The velocity decreases around the down-stream area of the facilities, .hut it increases in the other region. The water elevation decreases during the flood and it increases during the ebb.

  • PDF

A Study on the Service life of the Building Components in the Apartment Housing (공동주택 구성재의 내용년수 산정방법에 관한 연구)

  • Lee Kang-Hee;Chang Jung-Hee;Chae Chang-U
    • Journal of the Korean housing association
    • /
    • v.16 no.5
    • /
    • pp.67-74
    • /
    • 2005
  • The performance of building should be deteriorated with time while the building would maintain and manage the function and performance to get a living condition. For the efficient maintenance of the building, the repair cycle would be provided and applied during the service-life time. The service-life time of the building components would be needed to determine the repair time and the repair scope. The service-life time of the building components would be calculated with the 1st repair time and the recovery rate of the performance, considering the recovery rate after repaired. In this paper, the 1st repair time would be estimated with the normal probability distribution, choice probability and 3rd quadratic function. The recovery rate of the building components assumes various level according to the research target and utility area. The results of this study are as follows ; first, most of the components of the building work would range about 30 years in the service-life time and the components of the mechanical works range from 28 years to 37 years, those of the electrical works would be about 31 years.

Using Design of Mixture Experiments to Select the Ratio of a Three-Component Electrode for Optimal Generation of Hydroxyl Radicals (혼합물 실험계획법을 이용한 OH라디칼 최적 생성을 위한 삼성분 전극의 비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.793-800
    • /
    • 2020
  • The conventional development of multi-component electrodes is based on the researcher's experience and is based on trial and error. Therefore, there is a need for a scientific method to reduce the time and economic losses thereof and systematize the mixing of electrode components. In this study, we use design of mixture experiments (DOME)- in particular a simplex lattice design with Design Expert program- to attempt to find an optimum mixing ratio for a three-component electrode for the high RNO degradation; RNO is an indictor of OH radical formation. The experiment included 12 experimental points with 2 center replicates for 3 different independent variables (with the molar ratio of Ru, Ti, Ir). As the Prob > F value of the 'Quadratic' model is 0.0026, the secondary model was found to be suitable. Applying the molar ratio of the electrode components to the corrected response model results is an RNO removal efficiency (%) = 59.89 × [Ru] + 9.78 × [Ti] + 67.03 × [Ir] + 66.38 × [Ru] × [Ir] + 132.86 × [Ti] × [Ir]. The R2 value of the equation is 0.9374 after the error term is excluded. The optimized formulation of the ternary electrode for an high RNO degradation was acquired when the molar ratio of Ru 0.100, Ti 0.200, Ir 0.700 (desirability d value, 1).

Optimal Control Design-based Gain Selection of an LCL-filtered Grid-connected Inverter in State-Space under Distorted Grid Environment

  • Tran, Vi-Thuy;Yoon, Seung-Jin;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.344-345
    • /
    • 2018
  • In order to alleviate the negative impacts of harmonically distorted grid condition on grid-connect inverters, an optimal control design-based gain selection scheme of an LCL-filtered grid-connected inverter and its ability to compensate selective harmonics are presented in this paper. By incorporating resonant terms into the control structure in the state-space to provide infinity gain at selected frequencies, the proposed control offers an excellent steady-state response even under distorted grid voltage. The proposed control scheme is achieved by using a state feedback controller for stabilization purpose and by augmenting the resonant terms as well as intergral term into a control structure for reference tracking and harmonic compensation. Furthermore, the optimal linear quadratic control approach is adopted for choosing an optimal feedback gain to ensure an asymptotic stability of the whole system. A discrete-time full state observer is also introduced into the proposed control scheme for the purpose of reducing a total number of sensors used in the inverter system. The simulation results are given to prove the effectiveness and validity of the proposed control scheme.

  • PDF

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.