• Title/Summary/Keyword: quadratic damping

Search Result 69, Processing Time 0.021 seconds

Vibration Control of MR Suspension System Considering Damping Force Hysteresis (댐핑력 히스테리시스를 고려한 MR 서스펜션의 진동제어)

  • Seong, Min-Sang;Sung, Kum-Gil;Han, Young-Min;Choi, Seung-Bok;Lee, Ho-Guen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-322
    • /
    • 2008
  • This paper presents vibration control performances of a commercial magnetorheological(MR) suspension via new control strategy considering hysteresis of the field-dependent damping force of MR damper. A commercial MR damper which is applicable to high class passenger vehicle is adopted and its field-dependent damping force is experimentally evaluated. Preisach hysteresis model for the MR damper is identified using experimental first order descending(FOD) curves. Then, a feed-forward compensation strategy for the MR damper is formulated and integrated with a linear quadratic regulation(LQR) feedback controller for the suspension system. Control performances of the proposed control strategy for the MR suspension is experimentally evaluated with quarter vehicle test facility.

A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor (원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구)

  • Park, Sang-Shin;Kim, Gyu-Ha
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

Optimum Design for Shock Absorber of Gullwing Door (걸윙도어 쇽업쇼버의 최적설계)

  • Jang, Y.J.;Lee, S.B.;Yim, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.188-191
    • /
    • 2005
  • In this paper, a design optimization technique is presented for determining the stiffness and the damping coefficient of the shock absorber that is used in the Gullwing door system of passenger car. The contact force between the shock absorber and stopper link, when the door is opened, is set up as objective function, and the stiffness and the damping coefficient are set up as design variables. ADAMS optimization module (SQP method) is applied in the design optimization process. This study shows that the stiffness and the damping coefficient of the shock absorber can be effectively determined in initial design stage of the Gullwing door.

  • PDF

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Wind vibration control of stay cables using an evolutionary algorithm

  • Chen, Tim;Huang, Yu-Ching;Xu, Zhao-Wang;Chen, J.C.Y.
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.71-80
    • /
    • 2021
  • In steel cable bridges, the use of magnetorheological (MR) dampers between butt cables is constantly increasing to dampen vibrations caused by rain and wind. The biggest problem in the actual applications of those devices is to launch a kind of appropriate algorithm that can effectively and efficiently suppress the perturbation of the tie through basic calculations and optimal solutions. This article discusses the optimal evolutionary design based on a linear and quadratic regulator (hereafter LQR) to lessen the perturbation of the bridges with cables. The control numerical algorithms are expected to effectively and efficiently decrease the possible risks of the structural response in amplification owing to the feedback force in the direction of the MR attenuator. In addition, these numerical algorithms approximate those optimal linear quadratic regulator control forces through the corresponding damping and stiffness, which significantly lessens the work of calculating the significant and optimal control forces. Therefore, it has been shown that it plays an important and significant role in the practical application design of semiactive MR control power systems. In the present proposed novel evolutionary parallel distributed compensator scheme, the vibrational control problem with a simulated demonstration is used to evaluate the numerical algorithmic performance and effectiveness. The results show that these semiactive MR control numerical algorithms which are present proposed in the present paper has better performance than the optimal and the passive control, which is almost reaching the levels of linear quadratic regulator controls with minimal feedback requirements.

Development of a double cantilever sandwich beam method for evaluating frequency dependence of dynamic modulus and damping factor of rubber materials (고무의 동탄성계수와 손실계수의 주파수 의존성을 평가하기 위한 양팔 샌드위치보 시험법의 개발)

  • 김광우;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.19-22
    • /
    • 2001
  • This paper proposes a double cantilever sandwich-beam method for evaluating the frequency dependence of material dynamic characteristics. The flexural vibration of a double cantilever sandwich-beam specimen with a partially inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Quadratic relationships of dynamic elastic modulus and material loss factor of rubbers with frequency were quantitatively suggested employing the least square error method.

  • PDF

A Decentralized Approach to Power System Stabilization by Artificial Neural Network Based Receding Horizon Optimal Control (이동구간 최적 제어에 의한 전력계통 안정화의 분산제어 접근 방법)

  • Choi, Myeon-Song
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.815-823
    • /
    • 1999
  • This study considers an implementation of artificial neural networks to the receding horizon optimal control and is applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system with simpler local controllers that need only local information. A Neural network based Receding horizon Optimal Control (NROC) 1aw is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural networks, Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN). The proposed NROC is applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

  • PDF

Solution of Eigenproblems for Non-proportional Damping Systems by Lanczos Method (Lanczos 방법에 의한 비비례 감쇠 시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.283-290
    • /
    • 1998
  • A solution method is presented to solve the eigenproblem arising in tile dynamic analysis of non-proportional damping systems with symmetric matrices. The method is based on tile use of Lanczos method to generate a Krylov subspace of trial vectors, witch is then used to reduce a large eigenvalue problem to a much smaller one. The method retains the η order quadratic eigenproblem, without the need to the method of matrix augmentation traditionally used to cast the problem as a linear eigenproblem of order 2n. In the process, the method preserves tile sparseness and symmetry of the system matrices and does not invoke complex arithmetics, therefore, making it very economical for use in solving large problems. Numerical results are presented to demonstrate the efficiency and accuracy of the method.

  • PDF

Hydrodynamic analysis of a floating body with an open chamber using a 2D fully nonlinear numerical wave tank

  • Uzair, Ahmed Syed;Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.281-290
    • /
    • 2012
  • Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.

Nonlinear Vibration of a Two-degree-of-freedom Beam-Mass Structure in the Presence of Internal Resonance (내부공진을 고려한 2 자유도 보-질량 구조물의 비선형진동)

  • Oh, Il-Geun;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.49-54
    • /
    • 1993
  • The nonlinear dynamic characteristics of a two-degree-of-freedom beam-mass structure is investigated. The flexible L-shaped structure with a two-to-one internal resonance is subject to a primary resonance and the resulting planar dynamic responses are examined. A quadratic damping, which has been avoided to use because of the difficulties in the analysis, is considered to take into account the effect of viscous damping due to the surrounding fluid. The method of multiple scales is used to determine first-order approximations to the solutions. Force-response and frequency-response curves are generated.

  • PDF