• 제목/요약/키워드: q-factorial

검색결과 22건 처리시간 0.019초

Effect of Supplementing 2-Hydroxy-4-(Methylthio) Butanoic Acid and DL-methionine in Corn-soybean-cottonseed Meal Diets on Growth Performance and Carcass Quality of Broilers

  • Liu, Y.L.;Song, G.L.;Yi, G.F.;Hou, Y.Q.;Huang, J.W.;Vazquez-Anon, M.;Knight, C.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권8호
    • /
    • pp.1197-1205
    • /
    • 2006
  • This experiment was conducted to compare the effects of feeding DL-2-hydroxy-4-(methylthio)butanoic acid (HMTBA) and DL-methionine (DLM) supplemented corn-soybean-cottonseed meal diets on growth performance, carcass composition, and muscle color of broilers. The trial was designed as a $2{\times}3{\times}2$ factorial experiment, including two methionine (Met) sources (HMTBA and DLM), three equimolar graded levels of Met supplementation (i.e., 0.08, 0.16, and 0.24% in the starter diet and 0.07, 0.14, and 0.21% in the grower and finisher diets, respectively), and two sexes (male and female). Additionally, one basal diet for each sex was formulated to be limiting in Met to test the dosage response of increasing supplemental Met levels. Four hundred and twenty 10-d-old broilers were randomly allotted to 14 treatments (seven each for males and females), with five replicate pens per treatment and six chicks per pen. There was no difference (p>0.05) between the two Met sources in growth performance and muscle deposition of broilers throughout the whole experimental period (d 10 to 49). With the increasing Met supplementation levels, average daily gain was increased (quadratic; p<0.01) during the starter, grower, and overall phases, average daily feed intake was increased (quadratic; p<0.01) during the starter phase, and feed:gain ratio was decreased (quadratic; p<0.05) during the grower and overall phases. At the end of finisher phase, Met supplementation increased breast muscle content (quadratic; p<0.01) and thigh muscle content (linear; p<0.05), and decreased abdominal fat content (quadratic; p<0.02). Compared to the broiler fed DLM, broilers fed HMTBA had superior breast and thigh muscle coloration (p<0.01). Male broilers had higher weight gain and feed intake and better feed conversion than female broilers (p<0.01). The fat content of thigh muscle in female broilers was higher than that of male broilers (p<0.03). The best fit comparison of HMTBA vs. DLM was determined by Schwarz Bayesian Criteria index, which indicated that the average relative bioefficacy of HMTBA vs. DLM was 120% with 95% confidence limit 67 to 172%. These results indicated that Met supplementation improved growth performance and carcass quality of broilers fed corn-soybean-cottonseed meal diets irrespective of Met sources. Compared to DLM, HMTBA has the same molar bioefficacy on improving the growth performance and carcass quality of broilers; however, HMTBA fed birds had superior meat color to DLM fed birds.

Vitamin E improves antioxidant status but not lipid metabolism in laying hens fed a aged corn-containing diet

  • Ding, X.M.;Mu, Y.D.;Zhang, K.Y.;Wang, J.P.;Bai, S.P.;Zeng, Q.F.;Peng, H.W.
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.276-284
    • /
    • 2021
  • Objective: The objective of this study was to determine whether a dietary vitamin E (VE) supplement could alleviate any detrimental effects of aged corn on lipid metabolism and antioxidant status in laying hens. Methods: The experiment consisted of a 2×3 factorial design with two corn types (normal corn and aged corn (stored for 4 yr) and three concentrations of VE (0, 20, and 100 IU/kg). A total of 216 Lohmann laying hens (50 wk of age) were randomly allocated into six treatment diets for 12 wk. Each treatment had 6 replicates of 6 hens per replicate. Results: The results show that aged corn significantly decreased the content of low-density lipoprotein cholesterol (p<0.05), and reduced chemokine-like receptor 1 (CMKLR1) mRNA expression (p<0.05) in the liver compared to controls. Diet with VE did not alter the content of crude fat and cholesterol (p>0.05), or acetyl-CoA carboxylase, lipoprotein lipase, fatty acid synthase or CMKLR1 mRNA expression (p>0.05) in the liver among treatment groups. Aged corn significantly increased the content of malondialdehyde (MDA) (p<0.05) and decreased superoxide dismutase (SOD) activity (p<0.05) in the liver. The VE increased the content of MDA (p<0.05) but decreased glutathione peroxidase (GSH-Px) activity in serum (p<0.01) and in the ovaries (p<0.05). Adding VE at 20 and 100 IU/kg significantly increased GSH-Px activity (p<0.05) in liver and in serum (p<0.01), 100 IU/kg VE significantly increased SOD activity (p<0.05) in serum. Aged corn had no significant effects on GSH-Px mRNA or SOD mRNA expression (p<0.01) in the liver and ovaries. Addition of 100 IU/kg VE could significantly increase SOD mRNA expression (p<0.01) in the liver and ovary. Conclusion: Aged corn affected lipid metabolism and decreased the antioxidant function of laying hens. Dietary VE supplementation was unable to counteract the negative effects of aged corn on lipid metabolism. However, addition of 100 IU/kg VE prevented aged corninduced lipid peroxidation in the organs of laying hens.