• Title/Summary/Keyword: q-addition theorem

Search Result 5, Processing Time 0.018 seconds

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

ON PREECE'S IDENTITY AND OTHER CONTIGUOUS RESULTS

  • CHOI, JUNE-SANG;RATHIE ARJUN K.;BHOJAK BHARTI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Five results closely related to the well-known Preece's identity obtained earlier by Choi and Rathie will be derived here by using some known hypergeometric identities. In addition to this, the identities obtained earlier by Choi and Rathie have also been written in a compact form.

LEFT QUASI-ABUNDANT SEMIGROUPS

  • Ji, Zhulin;Ren, Xueming;Wang, Yanhui
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1159-1172
    • /
    • 2019
  • A semigroup S is called a weakly abundant semigroup if its every $\tilde{\mathcal{L}}$-class and every $\tilde{\mathcal{R}}$-class contains an idempotent. Our purpose is to study an analogue of orthodox semigroups in the class of weakly abundant semigroups. Such an analogue is called a left quasi-abundant semigroup, which is a weakly abundant semigroup with a left quasi-normal band of idempotents and having the congruence condition (C). To build our main structure theorem for left quasi-abundant semigroups, we first give a sufficient and necessary condition of the idempotent set E(S) of a weakly abundant semigroup S being a left quasi-normal band. And then we construct a left quasi-abundant semigroup in terms of weak spined products. Such a result is a generalisation of that of Guo and Shum for left semi-perfect abundant semigroups. In addition, we consider a type Q semigroup which is a left quasi-abundant semigroup having the PC condition.