• Title/Summary/Keyword: pyrophosphatase

Search Result 22, Processing Time 0.033 seconds

Cloning and Expression of the Gene for Inorganic Pyrophosphatase of Thermus caldophilus GK24 and Properties of the Enzyme

  • Hoe, Hyang-Sook;Jo, In-Geun;Shin, Hea-Jin;Jeon, Hyo-Jeong;Kim, Hyun-Kyu;Lee, Jin-Sung;Kim, Yong-Sung;Lee, Dae-Sil;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.301-305
    • /
    • 2002
  • The gene (ppaT) encoding Thermus caldophilus GK24 pyrophosphatase (Tca pyrophosphatase) was cloned and sequenced. The gene was found to contain an open reading frame encoding 175 amino acids with a calculated mass of 19,155 Da. The ppaT gene was expressed under the control of the tac promoter in Escherichia coli. The recombinant Tca pyrophosphatase was purified 21.4-fold with $56\%$ yield and specific activity of 25.7 U $mg^-1$, following a combination of heating (to denature the E. coli proteins) and one step of DEAE-Sephacel column chromatography. The native enzyme was found to have an approximate molecular mass of 110,000 Da and consisted of six subunits. The enzyme exhibited maximal activity at pH of 8.0-8.5 and was stable at $80-90^{\circ}C$. A divalent cation was absolutely required for the enzyme activity, with $Mg^2+$. being the most effective.

Characterization of a Noncanonical Purine dNTP Pyrophosphatase from Archaeoglobus fulgidus

  • Im Eun-Kyoung;Hong Chang-Hyung;Back Jung-Ho;Han Ye-Sun;Chung Ji-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1144-1148
    • /
    • 2006
  • DNA can oxidatively be deaminated by ROS, which converts DNA base amino groups to keto groups and can trigger abnormal mutations, resulting in mutagenesis in organisms. In this study, a noncanonical purine dNTP pyrophosphatase (AfPPase) from a hyperthermophilic archaeon Archaeoglobus fulgidus, which hydrolyzes aberrant nucleoside triphosphates, was overexpressed in E. coli, purified, and characterized. The purified AfPPase showed remarkably high activity for XTP and dITP, suggesting that the 6-keto group of these nucleotides is critical for the reactivity. Under optimal reaction conditions, the reaction rate for these substrates was about 120 times that with dGTP. Therefore, AfPPase may play a significant role in DNA repair by hydrolysis of noncanonical nucleotides before they are misincorporated into DNA.

Polymerization of ADP-Ribose Pyrophosphatase: Conversion Mechanism of $Mg^{2+}-Dependent$ ADP-Ribose Pyrophosphatase into $Mg^{2+}-Independent$ Form

  • Kim, Dae-Ki;Kim, Jong-Hyun;Song, Eun-Kyung;Han, Myung-Kwan;Kim, Jong-Suk
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.826-831
    • /
    • 2003
  • ADP-ribose pyrophosphatase (ADPRase) hydrolyzes ADP-ribose (ADPR) into AMP and ribose-5'-phosphate. It is classified into two groups, $Mg^{2+}$-dependent and $Mg^{2+}$-independent ADPRase, depending on its $Mg^{2+}$requirement. Here, we purified $Mg^{2+}$-dependent ADPRase from rabbit liver and examined what factors affect $Mg^{2+}$ requirement. The purified enzyme showed a single band with the molecular weight of 34 kDa on SDS-PAGE both in the presence and absence of 2-mercaptoethanol. The molecular weight of the native enzyme calculated by gel filtration was 68 kDa, indicating that ADPRase is a dimer made up of two identical subunits. $Mg^{2+}$-dependent ADPRase with the highest ADPR affinity had a $K_m$ of 160$\pm$10 $\mu$M and a pH optimum of around pH 9.5. Treatment of the purified ADPRase with heated cytosol fractions at 37$^{\circ}C$ for 3 h caused some changes in the chemical properties of the enzyme, including an increase in molecular weight, a decrease in solubility, and a loss of $Mg^{2+}$-dependency. The molecular weight of the cytosol-treated ADPRase measured by gel filtration was over 420 kDa, suggesting, for the first time, that ADPRase could be polymerized by undefined cytoplasmic factors, and that polymerization is accompanied by changes in the solubility and metal ion dependency of the enzyme.

Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase (애기장대 H+-pyrophosphatase 발현 형질전환 배추의 건조스트레스에 대한 생리적 반응)

  • Jeong, Mihye;Kang, In-Kyu;Kim, Chang Kil;Park, Kyung Il;Choi, Cheol;Han, Jeung-Sul
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.156-162
    • /
    • 2013
  • Plant tolerance to drought is a beneficial trait for stabilizing crop productivity under water deficits. Here we report that genetically engineered Chinese cabbage expressing Arabidopsis $H^+$-pyrophosphatase (AVP1) shows enhanced physiological parameters related to drought tolerance. In comparison with wild type plants under soil water deficit stress created by cessation of irrigation, soil water potential in pot with AVP1-expressing plants was more rapidly decreased that might lead to increased relative water content in leaves, while both genotypes had indistinguishable wilting phenotypes. Transgenic plants subjected to drought treatment also exhibited higher photosystem II quantum yield in addition to lower electrolyte leakage and $H_2O_2-3,3^{\prime}$-diaminobenzidine content when compared to wild type plants.

Effect of Nitric Oxide on ADP-ribose Pyrophosphatase Activity

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Background: ADP-ribosyl pyrophosphatases (ADPRase) has been known to catalyze the hydrolysis of ADP-ribose to ribose-5-phosphate and AMP. The role of ADPRase has been suggested to sanitize the cell by removing potentially toxic ADP-ribose. In this study, we examined the effect of nitric oxide on ADPRase activity in macrophages. Methods: ADPRase activity was measured in NO-inducing J774 cells. For in vitro experiments, recombinant human ADPRase was prepared in bacteria. Results: ADPRase activity was increased by the treatment of exogenous NO generating reagent, sodium nitroprusside (SNP), in J774 cells. The increased ADPRase activity was mediated by the post-translational modification, likely to cause cADP-ribosylation via nitrosylation of cysteine residue on the enzyme. The stimulation with endogeneous NO inducers, $TNF-{\alpha}/IFN-{\gamma}$, also increased ADPRase activity through NO synthesis. Futhermore, ADPRase activity may be mediated by the post-translational modification of ADPRase, ADP-ribosylation. Conclusion: These results indicate that NO synthesized by macrophage activation plays a critical role in the increase in ADPRase activity following ADP-ribose metabolism.

Effects of Hydrocortisone on Cardiac Endothelial Cells in Vitro (배양중 심장내피세포에 미치는 Hydrocortisone 의 영향)

  • 정태은
    • Journal of Chest Surgery
    • /
    • v.22 no.1
    • /
    • pp.16-24
    • /
    • 1989
  • To investigate the effects of hydrocortisone on new-born rat cardiac endothelial cells in culture, the endothelial cells were isolated by means of enzyme-cocktail method. The cells were cultivated in Lees modified Dulbeco\ulcorner medium and 10[M or 10[M of hydrocortisone was added to the medium. The cells were harvested or coverglass and processed for thiamin pyrophosphatase reaction and Feulgen reaction. The enzymatic activities of Golgi complex, number of cells and number of large nucleated[more than tetraploid] cells were counted and discussed for their significance. The results were summarized as follows; 1. Hydrocortisone seemed to accelerate the rate of recovery of cardiac endothelial cells from isolation damage. 2. Endothelial cells treated with hydrocortisone revealed strong positive reaction to thiamine pyrophosphatase in early culture and 10 M group had stronger reaction than that of 10 AM group 3. Hydrocortisone had inhibiting effects on endothelial proliferation and the higher the concentration of the reagent was the stronger effects. 4. Hydrocortisone inhibited the appearance of large nucleate cells in endothelial cell population. 5. Hydrocortisone seemed to suppress the nuclear DNA synthesis.

  • PDF

A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja;Lim, Woon-Ki
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 1996
  • An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

  • PDF

Effects of Dimethyl Sulfoxide on the Differentiation of Myocardial and Endothelial Cells (심근세포 및 내피새포의 분화에 미치는 Dimethyl Sulfoxide의 영향)

  • Lee, Dong-Hyup;Park, Yee-Tae;Han, Sung-Sae;Lee, Yung-Chang
    • Journal of Yeungnam Medical Science
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1988
  • To elucidate the effects of dimethyl sulfoxide on myocardial and endothelial cells in culture, the cells were exposed to 10% dimethyl sulfoxide in culture medium for 1 hour at 48 hours after cell isolation. The general morphology and the cytochemical reaction of marker enzymes for mitochondria and Golgi complexes were investigated. The results were summarized as follows. : 1. DMSO induced elongation and narrowing of the cells and increase of mitochondrial reaction in myocardial cells. 2. DMSO induced destruction and disruption of myofibrils in myocardial cells resulting in increase of contractile activities. 3. In the endothelial cells, DMSO suppressed proliferative activities but thiamine pyrophosphatase reactions were enhanced indicating increase of Goigi complex activity. 4. DMSO seemed to hamper with the adhesiveness and motility of the endothelial cells causing the decrease of the number of cells in vitro.

  • PDF