Characterization of a Noncanonical Purine dNTP Pyrophosphatase from Archaeoglobus fulgidus

  • Im Eun-Kyoung (Yonsei Research Institute of Aging Science, Yonsei University) ;
  • Hong Chang-Hyung (Yonsei Research Institute of Aging Science, Yonsei University) ;
  • Back Jung-Ho (Department of Advanced Fusion Technology, Konkuk University) ;
  • Han Ye-Sun (Department of Advanced Fusion Technology, Konkuk University) ;
  • Chung Ji-Hyung (Yonsei Research Institute of Aging Science, Yonsei University)
  • Published : 2006.07.01

Abstract

DNA can oxidatively be deaminated by ROS, which converts DNA base amino groups to keto groups and can trigger abnormal mutations, resulting in mutagenesis in organisms. In this study, a noncanonical purine dNTP pyrophosphatase (AfPPase) from a hyperthermophilic archaeon Archaeoglobus fulgidus, which hydrolyzes aberrant nucleoside triphosphates, was overexpressed in E. coli, purified, and characterized. The purified AfPPase showed remarkably high activity for XTP and dITP, suggesting that the 6-keto group of these nucleotides is critical for the reactivity. Under optimal reaction conditions, the reaction rate for these substrates was about 120 times that with dGTP. Therefore, AfPPase may play a significant role in DNA repair by hydrolysis of noncanonical nucleotides before they are misincorporated into DNA.

Keywords

References

  1. Altschul, S. F., L. M. Thomas, A. S. Alejandro, Z. Jinghui, Z. Zheng, M. Webb, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Jang, C. Y., J. Y Lee, and J. Kim. 2005. DNA repair activity of human rpS3 is operative to genotoxic damage in bacteria. J. Microbiol. Biotechnol. 15: 484-490
  3. Bianchi, V., E. Pontis, and P. Reichard. 1986. Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J. Biol. Chem. 261: 16037-16042
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Bridges, B. A. 1997. MutT prevents leakiness. Science 278: 78-79 https://doi.org/10.1126/science.278.5335.78
  6. Chung, J. H., H. Y. Park, J. H. Lee, and Y. Jang. 2002. Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli. J. Biochem. Mol. Biol. 35: 403-408 https://doi.org/10.5483/BMBRep.2002.35.4.403
  7. Dernple, B. and L. Harrison. 1994. Repair of oxidative damage to DNA: Enzymology and biology. Annu. Rev. Biochem. 63: 915-948 https://doi.org/10.1146/annurev.bi.63.070194.004411
  8. Gadsden, M. H., E. M. Mclntosh, J. C. Game, P. J. Wilson, and R. H. Haynes. 1993. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12: 4425-4431
  9. Harman, D. 1992. Role of free radicals in aging and disease. Ann. NY Acad. Sci. 673: 126-141 https://doi.org/10.1111/j.1749-6632.1992.tb27444.x
  10. He, B., H. Qing, and Y. W. Kow. 2000. Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat. Res. 459: 109-114 https://doi.org/10.1016/S0921-8777(99)00063-4
  11. Heringa, J. 1999. Two strategies for sequence comparison: Profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23: 341-364 https://doi.org/10.1016/S0097-8485(99)00012-1
  12. Hill-Perkins, M., M. D. Jones, and P. Karran. 1986. Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat. Res. 162: 153-163 https://doi.org/10.1016/0027-5107(86)90081-3
  13. Hong, J. H., J. H. Lee, and C. K. Hyun. 2004. Detection of DNA damage in carp using single-cell gel electrophoresis assay for genotoxicity monitoring. J. Microbiol. Biotechnol. 14: 268-275
  14. Hwang, K. Y., J. H. Chung, S. H. Kim, Y. S. Han, and Y. Cho. 1999. Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat. Struct. Biol. 6: 691-696 https://doi.org/10.1038/10745
  15. Janssen, Y. M., W. Janssen, B. V Houten, P. J. A. Borm, and B. T. Mossman. 1993. Cell and tissue responses to oxidative damage. Lab. Invest. 261: 261-274
  16. Karran, P. and T. Lindahl. 1980. Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19: 6005-6011 https://doi.org/10.1021/bi00567a010
  17. Klenk, H. P., R. A. Clayton, J. F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. D. Fleischmann, J. Quackenbush, N. H. Lee, G. G. Sutton, S. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, S. Peterson, C. I. Reich, L. K. McNeil, J. H. Badger, A. Glodek, L. Zhou, R. Overbeek, J. D. Gocayne, J. F. Weidman, L. McDonald, T. Utterback, M. D. Cotton, T. Spriggs, P. Artiach, B. P. Kaine, S. M. Sykes, P. W. Sadow, K. P. D'Andrea, C. Bowman, C. Fujii, S. A. Garland, T. M. Mason, G. J. Olsen, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364-370 https://doi.org/10.1038/37052
  18. Larsson, G, P. O. Nyman, and J. O. Kvassman. 1996. Kinetic characterization of dUTPase from Escherichia coli. J. Biol. Chem. 271: 24010-24016 https://doi.org/10.1074/jbc.271.39.24010
  19. Lindahl, T. and B. Nyberg. 1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13: 3405-3410 https://doi.org/10.1021/bi00713a035
  20. Lindahl, T. 1979. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 22: 135-192 https://doi.org/10.1016/S0079-6603(08)60800-4
  21. Min, J. H. and M. B. Gu. 2004. Adaptive responses of Escherichia coli for oxidative and protein damage using bioluminescence reporters. J. Microbiol. Biotechnol. 14: 466-469
  22. Saparbaev, M., J. C. Mani, and J. Laval. 2000. Interactions of the human, rat, S. cerevisiae and E. coli 3-methyladenine DNA glycosylases with DNA containing dIMP residues. Nucleic Acids Res. 28: 1332-1339 https://doi.org/10.1093/nar/28.6.1332
  23. Schouten, K. A. and B. Weiss. 1999. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat. Res. 435: 245-254 https://doi.org/10.1016/S0921-8777(99)00049-X
  24. Schuster, H. 1960. The reaction of nitrous acid with deoxyribonucleic acid. Biochem. Biophys. Res. Commun. 2: 320-323 https://doi.org/10.1016/0006-291X(60)90025-5
  25. Shapiro, R. and S. H. Pohl. 1968. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry 7: 448-455 https://doi.org/10.1021/bi00841a057
  26. Stetter, K. O., G. Lauerer, M. Thomm, and A. Neuner. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: A new taxon of extremely thermophilic archaebacteria. System. Appl. Microbiol. 10: 172-173 https://doi.org/10.1016/S0723-2020(88)80032-8
  27. Yao, M. and Y. W. Kow. 1997. Further characterization of Escherichia coli endonuclease V. J. Biol. Chem. 272: 30774-30779 https://doi.org/10.1074/jbc.272.49.30774
  28. Yu, T. S. 2005. Purification and characterization of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans. J. Microbiol. Biotechnol. 15: 573-578