Browse > Article

Characterization of a Noncanonical Purine dNTP Pyrophosphatase from Archaeoglobus fulgidus  

Im Eun-Kyoung (Yonsei Research Institute of Aging Science, Yonsei University)
Hong Chang-Hyung (Yonsei Research Institute of Aging Science, Yonsei University)
Back Jung-Ho (Department of Advanced Fusion Technology, Konkuk University)
Han Ye-Sun (Department of Advanced Fusion Technology, Konkuk University)
Chung Ji-Hyung (Yonsei Research Institute of Aging Science, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.7, 2006 , pp. 1144-1148 More about this Journal
Abstract
DNA can oxidatively be deaminated by ROS, which converts DNA base amino groups to keto groups and can trigger abnormal mutations, resulting in mutagenesis in organisms. In this study, a noncanonical purine dNTP pyrophosphatase (AfPPase) from a hyperthermophilic archaeon Archaeoglobus fulgidus, which hydrolyzes aberrant nucleoside triphosphates, was overexpressed in E. coli, purified, and characterized. The purified AfPPase showed remarkably high activity for XTP and dITP, suggesting that the 6-keto group of these nucleotides is critical for the reactivity. Under optimal reaction conditions, the reaction rate for these substrates was about 120 times that with dGTP. Therefore, AfPPase may play a significant role in DNA repair by hydrolysis of noncanonical nucleotides before they are misincorporated into DNA.
Keywords
Archaeoglobus fulgidus; hyperthermophile; mutation; noncanonical; dNTP pyrophosphatase;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Altschul, S. F., L. M. Thomas, A. S. Alejandro, Z. Jinghui, Z. Zheng, M. Webb, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI
2 Bianchi, V., E. Pontis, and P. Reichard. 1986. Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J. Biol. Chem. 261: 16037-16042
3 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
4 Chung, J. H., H. Y. Park, J. H. Lee, and Y. Jang. 2002. Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli. J. Biochem. Mol. Biol. 35: 403-408   DOI
5 Dernple, B. and L. Harrison. 1994. Repair of oxidative damage to DNA: Enzymology and biology. Annu. Rev. Biochem. 63: 915-948   DOI   ScienceOn
6 Heringa, J. 1999. Two strategies for sequence comparison: Profile-preprocessed and secondary structure-induced multiple alignment. Comput. Chem. 23: 341-364   DOI   ScienceOn
7 Janssen, Y. M., W. Janssen, B. V Houten, P. J. A. Borm, and B. T. Mossman. 1993. Cell and tissue responses to oxidative damage. Lab. Invest. 261: 261-274
8 Karran, P. and T. Lindahl. 1980. Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19: 6005-6011   DOI
9 Lindahl, T. and B. Nyberg. 1974. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13: 3405-3410   DOI   ScienceOn
10 Saparbaev, M., J. C. Mani, and J. Laval. 2000. Interactions of the human, rat, S. cerevisiae and E. coli 3-methyladenine DNA glycosylases with DNA containing dIMP residues. Nucleic Acids Res. 28: 1332-1339   DOI
11 Schouten, K. A. and B. Weiss. 1999. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat. Res. 435: 245-254   DOI   ScienceOn
12 Shapiro, R. and S. H. Pohl. 1968. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry 7: 448-455   DOI   ScienceOn
13 Yu, T. S. 2005. Purification and characterization of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans. J. Microbiol. Biotechnol. 15: 573-578   과학기술학회마을
14 Gadsden, M. H., E. M. Mclntosh, J. C. Game, P. J. Wilson, and R. H. Haynes. 1993. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12: 4425-4431
15 Schuster, H. 1960. The reaction of nitrous acid with deoxyribonucleic acid. Biochem. Biophys. Res. Commun. 2: 320-323   DOI
16 Larsson, G, P. O. Nyman, and J. O. Kvassman. 1996. Kinetic characterization of dUTPase from Escherichia coli. J. Biol. Chem. 271: 24010-24016   DOI   ScienceOn
17 He, B., H. Qing, and Y. W. Kow. 2000. Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat. Res. 459: 109-114   DOI
18 Hill-Perkins, M., M. D. Jones, and P. Karran. 1986. Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat. Res. 162: 153-163   DOI   ScienceOn
19 Hwang, K. Y., J. H. Chung, S. H. Kim, Y. S. Han, and Y. Cho. 1999. Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat. Struct. Biol. 6: 691-696   DOI   ScienceOn
20 Min, J. H. and M. B. Gu. 2004. Adaptive responses of Escherichia coli for oxidative and protein damage using bioluminescence reporters. J. Microbiol. Biotechnol. 14: 466-469
21 Klenk, H. P., R. A. Clayton, J. F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. D. Fleischmann, J. Quackenbush, N. H. Lee, G. G. Sutton, S. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, S. Peterson, C. I. Reich, L. K. McNeil, J. H. Badger, A. Glodek, L. Zhou, R. Overbeek, J. D. Gocayne, J. F. Weidman, L. McDonald, T. Utterback, M. D. Cotton, T. Spriggs, P. Artiach, B. P. Kaine, S. M. Sykes, P. W. Sadow, K. P. D'Andrea, C. Bowman, C. Fujii, S. A. Garland, T. M. Mason, G. J. Olsen, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364-370   DOI   ScienceOn
22 Stetter, K. O., G. Lauerer, M. Thomm, and A. Neuner. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: A new taxon of extremely thermophilic archaebacteria. System. Appl. Microbiol. 10: 172-173   DOI
23 Yao, M. and Y. W. Kow. 1997. Further characterization of Escherichia coli endonuclease V. J. Biol. Chem. 272: 30774-30779   DOI   ScienceOn
24 Bridges, B. A. 1997. MutT prevents leakiness. Science 278: 78-79   DOI   ScienceOn
25 Hong, J. H., J. H. Lee, and C. K. Hyun. 2004. Detection of DNA damage in carp using single-cell gel electrophoresis assay for genotoxicity monitoring. J. Microbiol. Biotechnol. 14: 268-275
26 Lindahl, T. 1979. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 22: 135-192   DOI
27 Harman, D. 1992. Role of free radicals in aging and disease. Ann. NY Acad. Sci. 673: 126-141   DOI
28 Jang, C. Y., J. Y Lee, and J. Kim. 2005. DNA repair activity of human rpS3 is operative to genotoxic damage in bacteria. J. Microbiol. Biotechnol. 15: 484-490   과학기술학회마을