• Title/Summary/Keyword: pyrolytic

Search Result 170, Processing Time 0.033 seconds

Conversion Characteristics of MSW at Various Pyrolytic and Oxidative Conditions (열분해 및 산화조건에서 MSW의 물질전환특성 연구)

  • Byen, Kyong-Hee;Lee, Yong-Jin;Yoon, Kyoon-Duk;Dong, Jong-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1955-1968
    • /
    • 2000
  • Thermal gravimetric change characteristics and gas phase product - CO, NO, $NO_2$, VOCs - generated in the process of pyrolysis and oxidation. were investigated with variation of process parameters including furnace reactor temperature both in pyrolytic and oxidative conditions. For the thermal gravimetric change characteristics. paper and wood were mainly decomposed at lower temperatures and they had similar thermal gravimetric change trend due to their similar compositions; plastics were mainly decomposed at higher temperatures; in the case of textile. natural compounds were decomposed at lower temperatures and synthetic compounds at relatively higher temperatures; food was decomposed in the wide range of temperatures possibly due to their different kinds of components. For the analysis results of gas phase product. the concentrations of NO, $NO_2$ were detected at higher level at the oxidative conditions than at the pyrolytic conditions except that of CO, which is due to complete combustion with sufficient oxygen at the oxidative condition; food gave off CO, NO, $NO_2$ more than the other wastes. VOCs were emitted more at the pyrolytic conditions than at the oxidative conditions.

  • PDF

Pyrolytic Formation of Benzo[a]pyrene in Foods During Heating and Cancer Risk Assessment in Koreans (식품가열에 따른 Benzo[a]pyrene 생성 및 한국인의 발암 위해성 평가)

  • 최옥경;이병무
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.3
    • /
    • pp.133-139
    • /
    • 1994
  • The pyrolytic formation of benzo[a]pyrene during the cooking procedure was analysed in beef, pork, pacific saury, rice, and soybean by HPLC. In raw foods, benzo[a]pyrene (B[a]P) was not detected or negligible, but it was increasingly formed when foods were boiled (0.010~0.037 ppb) and more dramatically during broiling (0.302~0.851 ppb) in a time dependent manner. Human daily intake of B[a]P in Koreans and cancer risk assessment were estimated based on food consumption per capita and carcinogenic potency of B[a]P. When cooked foods were consumed for entire life time, cancer risk was estimated to bo 1.77$\times$10-6>1.65$\times$10-7>1.32$\times$10-8 by the order of broiled, boiled, and raw foods consumption. These data suggest that broiled foods produce more benzo[a]pyrene than water boiled foods. Thus cooking procedure is an important factor for the formation of carcinogens and needs to bo modified to reduce cancer risk for man.

  • PDF

A Study on the CVD Deposition for SiC-TRISO Coated Fuel Material Fabrication (화학증착법을 이용한 삼중 코팅 핵연료 제조에 관한 연구)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Kim, Sung-Soon;Lee, Hong-Lim;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.169-174
    • /
    • 2007
  • TRISO coated fuel particle is one of the most important materials for hydrogen production using HTGR (high temperature gas cooled reactors). It is composed of three isotropic layers: inner pyrolytic carbon (IPyC), silicon carbide (SiC), outer pyrolytic carbon (OPyC) layers. In this study, TRISO coated fuel particle layers were deposited through CVD process in a horizontal hot wall deposition system. Also the computational simulations of input gas velocity, temperature profile and pressure in the reaction chamber were conducted with varying process variable (i.e temperature and input gas ratios). As deposition temperature increased, microstructure, chemical composition and growth behavior changed and deposition rate increased. The simulation showed that the change of reactant states affected growth rate at each position of the susceptor. The experimental results showed a close correlation with the simulation results.

Pyrolytic Conversion of Blended Precursors into Ti-Al-N Ceramic Composites

  • Cheng, Fei;Sugahara, Yoshiyuki;Kuoda, Kazuyuki
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.32-36
    • /
    • 2000
  • Pyrolytic preparations of Ti-Al-N ceramics from three blended precursors were investigated. The precursors were prepared stirring ($HA1N^{i}Pr_m$ and an aminolysis product of $Ti(NMe_2)_4$ with $MeHNCH_2CH_2$NHMe in $C_6/H_6$ . IR and $^1H\;NMR $analyses suggested that essentially no Ti-N-Al bonds were present in the precursors. Pyrolysis of the precursors under $NH_3-N_2$led to the formation of brown solids with ceramic yields of about 30%, and the Ti-Al ratios in the pyrolyzed products were close to those of the precursors. XRD analysis of the pyrolyzed product from the precursor with Ti:Al=5:1 indicated the formation of a NaCl-type compound as the only crystalline phase. Pyrolysis of the precursor with Ti:Al=2:1 led to the formation of AlN besides the major NaCl-type compound. A ceramic composite containing AlN and the NaCl-type compound was formed by pyrolysis of the precursor with Ti:Al=1:2.

  • PDF

The Fiber Damage and Mechanical Properties of Short-fiber Reinforced Composite Depending on Nozzle Size Variations in Injection/Mold Sides (단섬유강화 복합재료에서 사출측/금형측 노즐 크기 변화에 따른 섬유손상 및 기계적 성질)

  • Lee, In-Seop;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.564-573
    • /
    • 2001
  • The mechanical properties of short carbon/glass fiber reinforced polypropylene are experimentally measured as functions of fiber content and nozzle diameter. Also, these properties are compared with the survival rate of reinforced fibers and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber aspect ratio as well as fiber volume fraction is influenced by injection processing condition, the used materials and mold conditions such as diameter of nozzle, etc. In this study, the survival rate of fiber aspect ratio is investigated by nozzle size variations in injection/mold sides. It is found that the survival rate of glass fiber is higher that the survival rate of glass fiber is higher than that of carbon fiber. Both tensile modulus and strength of short-fiber reinforced polypropylene are improved s the fiber volume fraction and nozzle diameter are increased.

Mid-term Experience with the Pyrolytic Carbon Bileaflet Mechanical Valves (쌍엽 기계판막에대한 임상연구)

  • 박계현
    • Journal of Chest Surgery
    • /
    • v.25 no.2
    • /
    • pp.137-148
    • /
    • 1992
  • Until March 1991, 435 St. Jude Medical valves and 330 CarboMedics valves were implanted in 358 and 251 patients, respectively. 300 patients were male and 309 were female with the mean age of 35.6 years[from 2 month to 68 years]. 458 valves were implanted in the mitral, 272 in the aortic, 25 in the tricuspid, and 10 in the pulmonic position. Postoperatively, all patients except for very young patients were given coumadin with or without dipyridamole for anticogulation Operative mortality was 7.3%[45 deaths per 618 operations]. A total follow-up of 1244.8 patient-years was achieved for the operative survivors with a follow-up rate of 96.8%, [mean follow-up period=26.3 months /patient, ranging from 1 to 80 months]. Functional improvement was evident; 66.7% of these patients were in NYHA functional class III or IV preopratively, whereas 98.4% are in class I or II pos-toperatively. There occurred 13 late deaths[7 valve-related] and 55 valve-related complications. Linearized rates of late death and valve-related complications were 1.0%/ patient-year, 4.42%/patient-year, respectively. Rates of thromboembolism, anticoagluation-related hemorrhage were 1.12%/patient-year, 1.69% /patient-year, respectively. Actuarial survival at 5 years is 96.0% and complication-free survival at 5 years is 83.9%. No difference in survival and incidence of complications was found between the St. Jude and CarboMedics valves. On the basis of this experience, we believe that the pyrolytic carbon bileaflet mechanical valves are safe and preferable choice among current valve prostheses.

  • PDF

Experimental Studies on Plasmon Resonance of Ag Nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG)

  • Lopez Salido, Ignacio;Bertram, Nils;Lim, Dong-Chan;Gantefor, Gerd;Kim, Young-Dok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.556-562
    • /
    • 2006
  • Studies on Ag nanoparticles grown on Highly Ordered Pyrolytic Graphite (HOPG) using HREELS provide different results for smaller and larger particle sizes corresponding to Ag coverages below and above 4 monolayers, respectively. For the larger particles, a positive frequency shift with decreasing particle size and a broadening of the plasmon resonance were observed with decreasing particle size, in line with previous studies on Ag on alumina. For the smaller particles, in contrast, a shift to lower energy with decreasing particle size, and a narrowing of the plasmon resonance with decreasing particle size can be found. The asymmetry of the Ag-features present for Ag coverages above 4 monolayers disappears for Ag coverages below 4 monolayers. The result for the smaller particles can be rationalized in terms of change of the particle growth mode with increasing particle size, which corroborates our STM data, as well as electronic effects due to the metal/support charge transfer.

Stress Analysis for Fiber Reinforced Composites under Indentation Contact Loading (압입접촉하중이 작용하는 섬유강화 복합재료의 응력해석)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Kim, Chul;Woo, Sang-Kuk;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • Modeling and FEM analysis on Boron Nitride and/or Pyrolytic Carbon coating layers on SiC fibers under indentation contact loadings are investigated. Especially this study attempts to model the mechanical behavior of the SiC fibers with and without coatings. Tyranno S grade and Tyranno LoxM grade of SiC are selected for fiber and Boron Nitride and/or Pyrolytic Carbon as coating material. The modeling is performed by SiC fiber without coating layer, which includs single(BN or PyC) and double(BN-PyC or PyC-BN) coating layer. And then the analysis is performed by changing a type of coating layer, a type of fiber and coating sequence. In this study, the concepts of modeling and analysis techniques for optimum design of BN and PyC coating process on SiC fiber are shown. Results show that stresses are reduced when indentation contact loading applies on the material having lower elastic modulus.