DOI QR코드

DOI QR Code

Experimental Studies on Plasmon Resonance of Ag Nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG)

  • Published : 2006.04.20

Abstract

Studies on Ag nanoparticles grown on Highly Ordered Pyrolytic Graphite (HOPG) using HREELS provide different results for smaller and larger particle sizes corresponding to Ag coverages below and above 4 monolayers, respectively. For the larger particles, a positive frequency shift with decreasing particle size and a broadening of the plasmon resonance were observed with decreasing particle size, in line with previous studies on Ag on alumina. For the smaller particles, in contrast, a shift to lower energy with decreasing particle size, and a narrowing of the plasmon resonance with decreasing particle size can be found. The asymmetry of the Ag-features present for Ag coverages above 4 monolayers disappears for Ag coverages below 4 monolayers. The result for the smaller particles can be rationalized in terms of change of the particle growth mode with increasing particle size, which corroborates our STM data, as well as electronic effects due to the metal/support charge transfer.

Keywords

References

  1. Valden, M.; Lai, X.; Goodman, D.W. Science 1998, 281, 1647 https://doi.org/10.1126/science.281.5383.1647
  2. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. J. Catal. 1993, 144, 175 https://doi.org/10.1006/jcat.1993.1322
  3. Lim, D. C.; Lopez-Salido, I.; Kim, Y. D. Surf. Sci. 2005, 598, 96 https://doi.org/10.1016/j.susc.2005.08.030
  4. Bukhtiyarov, V. I.; Carley, A. F.; Dollar, L. A.; Roberts, M. W. Surf. Sci. Lett. 1997, 381, L605 https://doi.org/10.1016/S0039-6028(97)00057-5
  5. Kreibig, W.; Vollmer, M. Optical Properties of Metal Clusters, Springer Series in Material Science 25; Springer: 1995
  6. Rocca, M. Surf. Sci. Rep. 1995, 22, 1 https://doi.org/10.1016/0167-5729(95)00004-6
  7. Wenzel, T.; Bosbach, J.; Stietz, F.; Trager, F. Surf. Sci. 1999, 432, 257 https://doi.org/10.1016/S0039-6028(99)00546-4
  8. Liebsch, A. Phys. Rev. B 1993, 48, 11317
  9. Kreibig, U.; Genzel, L. Surf. Sci. 1985, 156, 678 https://doi.org/10.1016/0039-6028(85)90239-0
  10. Nilius, N.; Ernst, N.; Freund, H.-J. Phys. Rev. Lett. 2000, 84, 3994 https://doi.org/10.1103/PhysRevLett.84.3994
  11. Eckardt, W.; Tran Thoai, D. B.; Frank, F.; Schulze, W. Solid State Comm. 1983, 46, 571 https://doi.org/10.1016/0038-1098(83)90694-4
  12. Charle, K.-P.; Schulze, W.; Winter, B. Z. Phys. D 1989, 12, 471 https://doi.org/10.1007/BF01427000
  13. Tiggesbaumer, J.; Köller, L.; Meiwes-Broer, K.-H.; Liebsch, A. Phys. Rev. A 1993, 48, R1749 https://doi.org/10.1103/PhysRevA.48.R1749
  14. Genzel, L.; Martin, T. P.; Kreibig, U. Z. Phys. B 1975, 21, 339
  15. Hovel, H.; Fritz, S.; Hilger, A.; Kreibig, U.; Vollmer, M. Phys. Rev. B 1993, 48, 18178
  16. Savio, L.; Vattuone, L.; Rocca, M. Phys. Rev. B 2003, 67, 045406 https://doi.org/10.1103/PhysRevB.67.045406
  17. Grimaud, C.-M.; Siller, L.; Andersson, M.; Palmer, R. E. Phys. Rev. B 1999, 59, 9874 https://doi.org/10.1103/PhysRevB.59.9874
  18. Harbich, W.; Fedrige, S.; Buttet, J. Z. Phys. D 1993, 26, 138 https://doi.org/10.1007/BF01429124
  19. Harbich, W.; Fedrigo, S.; Buttet, J. Chem. Phys. Lett. 1992, 195, 613 https://doi.org/10.1016/0009-2614(92)85572-R
  20. Schaffner, M.-H.; Patthey, F.; Schneider,W.-D. Surf. Sci. 1998, 417, 159 https://doi.org/10.1016/S0039-6028(98)00690-6
  21. Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. Surf. Sci. 2005, 588, 6 https://doi.org/10.1016/j.susc.2005.05.021
  22. Hovel, K.; Becker, Th.; Nettac, A.; Reihl, B.; Tschudy, M.; Williams, E. J. J. Appl. Phys. 1997, 81, 154 https://doi.org/10.1063/1.364003
  23. Campbell, C. T. Surf. Sci. Rep. 1997, 27, 1 https://doi.org/10.1016/S0167-5729(96)00011-8
  24. Winsemius, P.; Kampen, F. F.; Lengbeeck, H. P.; Van Went, G. G. J. Phys. F 1976, 6, 1583 https://doi.org/10.1088/0305-4608/6/8/017
  25. Ehrenreich, E.; Philipp, H. Phys. Rev. 1962, 128, 1622 https://doi.org/10.1103/PhysRev.128.1622
  26. Djurisic, A. B.; Li, E. H. J. Appl. Phys. 1999, 85, 7404 https://doi.org/10.1063/1.369370
  27. Gans, R. Ann. Phys. 1912, 37, 881
  28. Luo, K.; Lai, X.; Yi, C.-Y.; Davis, A.; Gath, K. K.; Goodman, D. W. J. Phys. Chem. B 2004, 109, 4064 https://doi.org/10.1021/jp045948k
  29. Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. J. Phys. Chem. B 2006, 110, 1128 https://doi.org/10.1021/jp054790g
  30. Linnert, T.; Mulvaney, P.; Hengle, A. J. Phys. Chem. 1993, 97, 679 https://doi.org/10.1021/j100105a024
  31. Suzuki, S.; Bower, C.; Watanabe, Y.; Zhou, O. Appl. Phys. Lett. 2000, 76, 4007 https://doi.org/10.1063/1.126849
  32. Kim, Y. D.; Wei, T.; Wendt, S.; Goodman, D. W. Langmuir 2003, 19, 7929 https://doi.org/10.1021/la0300075
  33. Wertheim, G. K.; DiCenzo, S. B.; Buchanan, D. N. E. Phys. Rev. B 1986, 33, 5384 https://doi.org/10.1103/PhysRevB.33.5384

Cited by

  1. Clusters Soft-Landed onto HOPG vol.115, pp.25, 2011, https://doi.org/10.1021/jp202165u
  2. Growth of Silver Nanoclusters on Monolayer Nanoparticulate Titanium-oxo-alkoxy Coatings vol.116, pp.32, 2012, https://doi.org/10.1021/jp303356y
  3. Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial vol.2015, pp.1687-4129, 2015, https://doi.org/10.1155/2015/876247
  4. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions vol.139, pp.17, 2017, https://doi.org/10.1021/jacs.7b01079
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Do Ag(n) (up to n = 8) clusters retain their identity on graphite? Insights from first-principles calculations including dispersion interactions. vol.140, pp.16, 2014, https://doi.org/10.1063/1.4871411
  7. Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle System (4 pages) vol.106, pp.2, 2006, https://doi.org/10.1063/1.4905896