• Title/Summary/Keyword: pyrolytic

Search Result 170, Processing Time 0.024 seconds

A Study on the Synthesis ann Pyrolytic Properties of SiC/Ti Hybrid Ceramic Precursor by Hydrolysis (가수분해에 의한 탄화규소/티타늄 혼성 세라믹 전구체 합성과 열분해 특성에 관한 연구)

  • 황택성;이존태;우희권
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.299-305
    • /
    • 2000
  • In order to increase the thermal stability at high temperatures, new hybrid ceramic percursors were synthesized by chemical modification of polycarbosilane (PCS). The structure of hybrid ceramic percursors were investigated by using FT-IR and $^1$H-NMR spectrometers. The syntheses of hybrid ceramic precursors were confirmed by monitoring the change of the adsorption peaks appearing at 0893, 1092, 609 $cm^{-1}$ / on the FT-IR spectra, and also by the presence of peaks at 3.8, 2.0, 0.6 ppm on the $^1$H-NMR spectra. The conversion of hybrid ceramic percursor was around 74 and 10 wt% higher than that of the pure PCS. After the heat-treatment at 150$0^{\circ}C$, the crystalline peaks for $\beta$-SiC were observed at 2$\theta$=35.7, 42.2, 61.0$^{\circ}$ on the X-ray powder diffractogram. It showed the conversion of hybrid ceramic percursor to crystalline $\beta$-SiC.

  • PDF

Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products

  • Shazali, Erna Rashidah Hj;Morni, Nurul Afiqah Haji;Bakar, Muhammad Saifullah Abu;Ahmed, Ashfaq;Azad, Abul K;Phusunti, Neeranuch;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2021
  • The present study aimed to determine the effect of co-pyrolysis of sawdust biomass and scrap tyre waste employing different blending ratios of sawdust to waste tyre such as 100:0, 75:25, 50:50, 25:75, and 0:100. The thermochemical characterization of feedstocks was carried out by employing the proximate, ultimate analysis, and thermogravimetric (TGA) analyses, calorific values, and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM-EDX) to select the blending ratio having better bioenergy potential amongst the studied ratios. The blending ratio of 25:75 (sawdust to waste tyre) was selected for the co-pyrolysis study in a fixed-bed pyrolysis reactor system based on its solid biofuels properties such as heating value (30.18 MJ/kg), and carbon (71.81 wt%) and volatile matter (63.82 wt%) contents. The pyrolysis temperatures were varied as 500, 600 and 700 ℃ while the other parameters such as heating rate and nitrogen flowrate were maintained at 30 ℃/min and 0.5 L/min respectively. The bio-oil yields as 31.9, 47.1 and 61.2 wt%, bio-char yields as 34.5, 34.2 and 31.4 wt% and gaseous product yields as 33.6, 18.60 and 7.3 wt% at the pyrolysis temperatures of 500, 600 and 700 ℃ respectively were obtained. The blends of sawdust and waste tyres showed the improved energy characteristics which could provide the solution for the beneficial management of sawdust and scrape tyre wastes via co-pyrolysis processing.

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature (Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Kim, Chi-Hoi;Kim, Su-Ho;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.

Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries (리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성)

  • Kwon, Ik-Hyun;Song, Myoung-Youp;Bang, Eui-Yong;Han, Young-Soo;Kim, Ki-Tae;Lee, Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • Disordered carbon and boron-substituted disordered carbons $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ were synthesized by Pyrolysis of LPG(liquid Propane gas)and $BCl_3$. Their electrochemical properties as anode materials for Li-ion secondary batteries were then investigated. When PVDF is added to the sample in a weight ratio 5 : 95, the disordered carbon with x=0.00 had the first discharge capacity 374 mAh/g. Its cycling performance was relatively good from the second cycle and it had the discharge capacity 258 mAh/g at the 10th cycle. When PVDF is added to the sample in a weight ratio 5 : 95, the sample with x=0.05 among the samples $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ exhibited the largest first discharge capacity 860 mAh/g and discharge capacity 181 mAh/g at the 10th cycle. All the samples had similar cycling performances from the second cycle. The sample $C_{0.90}B_{0.10}$ showed the best electrochemical properties as a anode materials fur Li-ion secondary battery from the view points of the first discharge capacity(853 mAh/g when $10w1.\%$ PVDF is used), cycling performance, discharge capacity(400mAh/g at the 10th cycle when $10wt.\%$ PVDF is used). All the samples showed generally larger charge and discharge capacities when $10wt.\%$ PVDF ratter than $5wt.\%$ PVDF is used. The plateau region in the range of voltage lower than 1.25V becomes larger probably since the structure becomes less disordered by the addition of boron. When boron is added, the charge and discharge capacities decreased suddenly at the second cycle. This may be become only a part of Li are reversibly deintercalated and intercalated and a part of Li which are strongly combined with B are not deintercalated. The increases in charge and discharge capacities are considered to be resulted from the increase in the potential of Li in the boron-added carbons, caused by the strengthening of the chemical bond between the intercalated Li and the boron-carbon host since the boron acts as electron acceptor.

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products (팜 부산물에 존재하는 무기성분이 급속열분해 생성물의 특성에 미치는 영향)

  • Moon, Jaegwan;Lee, Jae Hoon;Hwang, Hyewon;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.629-638
    • /
    • 2016
  • In this study, the effect of inorganic constituents on the physicochemical properties of pyrolytic products produced from empty fruit bunch (EFB) by fast pyrolysis were investigated. Inorganic constituents were removed from the EFB by means of washing treatment with hydrofluoric acid (HF) and distilled water (D.I water). Ash content decreased from 6.2 wt% (EFB) to 2.4 wt% (HF-EFB) and 3.5 wt% (D.I-EFB), respectively. As a result of the inorganic component, a quantity of potassium in EFB has showed the highest removal efficiency in both HF and D.I water (HF: 80.3%, D.I water: 72.8%). Fast pyrolysis was performed with demineralized EFB in the fluidized bed reactor under the temperature of $500^{\circ}C$ at the residence time of 1.3 sec. The yield of bio-oil was determined to 57.3 wt% for HF-EFB and 52.1 wt% for D.I-EFB, respectively. Biochar yield decreased whereas yield of non-condensable gas increased with decreasing inorganic content of EFB. Water content decreased from 26.9% (EFB) to 9.9% (HF-EFB) and viscosity increased from 16.1 cSt (EFB) to 334 cSt (HF-EFB).

Short and Intermediate Term Results of the ATS Heart Valve Replacement (ATS 인공 심장 판막의 단기 및 중기 임상성적)

  • Lim, Chang-Young;Moon, Seung-Chul;Yang, Jin-Young;Koo, Won-Mo;Kim, Dae-Sig;Lee, Gun;Lee, Hyeon-Jae
    • Journal of Chest Surgery
    • /
    • v.32 no.11
    • /
    • pp.1031-1035
    • /
    • 1999
  • Background: ATS mechanical valve is a recently introduced pyrolytic carbon bileaflet prosthesis. This report is to evaluate the results of hemodynamic and anticoagulant therapy after ATS valve replacement. Material and Method: From May 1995 to October 1998, 53 patients received 65 ATS prosthesis; 38 Mitral(27-33 mm), 27 Aortic(19-25 mm). 2 CABGs and 5 Tricuspid annuloplasty were taken concomitantly. The follow up period was 769 patient-months(mean 16.2$\pm$10.0), varied from 1 month to 39 months with 92.5% follow up rate. All patients were evaluated with Doppler echocardiography, 7-14 days after operation. Result: NYHA functional class was improved significantly, from 2.6$\pm$0.8 preoperatively to 1.3$\pm$0.4 postoperatively. The average value of peak and mean transvalvular pressure gradients were 25.7$\pm$13.5 mmHg, 12.7$\pm$8.3 mmHg in aortic position. In the mitral position, the average values of peak and mean transvalvular pressure gradient and valve area were 5.9$\pm$2.5 mmHg, 3.1$\pm$0.8 mmHg and 2.9$\pm$0.5 $\textrm{cm}^2$, respectively. In the anticoagulant therapy, mean INR was 2.5$\pm$0.6 in mitral valve replacement and 1.9$\pm$0.5 in aortic valve replacement. There was no anticoagulant related complication. During that period, there were 3 hospital death(5.9%) and 1 late death(1.9%). Conclusion: The early clinical results of the ATS heart valve replacement is quite satisfactory, and low target INR reginmen is safe. And long term follow of hemodynamic characteristics is also necessary.

  • PDF

A Study on the Thermal Decomposition of Alunite (명반석의 열분해)

  • 김형석;조동성
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.33-40
    • /
    • 1998
  • The formation reation of anhydrite (CaSO$_{4}$) depends upon the amount and velocity of the SO$_{3}$(g) and CaO(s) produced in the process of the thermal decomposition of alunite[K$_{2}SO_{4}{\cdot}Al_{2}(SO_{4})_{3}{\cdot}4Al(OH)_{3}$] and limestone (CaCO$_{3}$) respectively. Therefore, this study had carried out to investigate the amount and velocity of SO$_{3}$(g) produced by roasting alunite and pyrolytic materials. In air, alunite was transfouned into KAl(SO$_{4})_{2}$ and Al$_{2}O_{3}$ by dehydration at 500~580$^{\circ}C$. The dehydration velocity of alunite was found to be kt=(1-(1-${\alpha})^{1/3})^{2}$, the activation energy, 73.01 kcal/mol. SO$_{3}$(g) ware slowly produced by the thermal decomposition of KAl(SO$_{2})_{2}$, at 580~700$^{\circ}C$, rapidly, at 700~780$^{\circ}C$, The pyrolysis velocity of KAl(SO$_{4})_{2}$ was found to be kt=1-(1-${\alpha})^{1/1}$; activation energy, 66.84kcal/mol. The SiO$_{2}$ and kaolinite in alunite ore scarcely affected the temperature and velocity in which SO$_{3}$(g) were produced.

  • PDF

Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature (반응온도에 따른 팜 부산물(empty fruit bunch)의 열화학적 분해 특성에 관한 연구)

  • Lee, Jae Hoon;Moon, Jae Gwan;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.350-359
    • /
    • 2016
  • We performed fast pyrolysis of empty fruit bunch (EFB) in the range of temperature from $400{\sim}550^{\circ}C$ and 1.3 s of residence time. The effect of temperature on the yields and physicochemical properties of pyrolytic products were also studied. Elemental and component analysis of EFB showed that the large amount of potassium (ca. 8400 ppm) presents in the feedstock. Thermogravimetric analysis suggested that the potassium in the feedstock catalyzed degradation of cellulose. The yield of bio-oil increased with increasing temperature in the range of temperature from $400{\sim}500^{\circ}C$, while that of gas and biochar decreased and showed monotonous change each with increasing temperature. When the EFB was pyrolyzed at $550^{\circ}C$, the yield of bio-oil and char decreased while that of gas increased. Water content of the bio-oils obtained at different temperatures was 20~30% and their total acid number were less than 100 mg KOH/g oil. Viscosity of the bio-oils was 11 cSt (centistoke), and heating value varied from 15 to 17 MJ/kg. Using GC/MS analysis, 27 chemical compounds which were classified into two groups (cellulose-derived and lignin-derived) were identified. Remarkably the concentration of phenol was approximately 25% based on entire chemical compounds.

The Electrochemical Property Studies on Polyacenic Semiconductor Anode Material (음극 폴리아센 반도체 재료의 전기화학적 특성연구)

  • Kim Han-Joo;Park Jong-Eun;Son Won-Keun;Lee Hong-Ki;Park Soo-Gil;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.134-137
    • /
    • 1999
  • The polyacenic semiconductor material (PAS) electrode prepared by the pyrolytic treatment of phenol-formaldehyde resin is one of useful electrodes. As an anode material of lithium rechargeable batteries, amorphous carbon materials have been studied extensively because of their high electrochemcal performance and cyclicability. Carbon materials do not lead to the formation of lithium dendrite which is one of the most serious problems in applying Li-based materials to an electrode of batteries. The polyacene materials prepared from phenol resin at relatively low temperatures $(550\~750^{\circ}C)$ show a highly Li\doped state up to $C_2Li$ state without liberation of Li cluster. We prepared each polyacene materials at various temperature and investigated electro- chemical properties. We tried to change the mole ratio of [H]/[C] which is $0.24\~0.4$ range. Considering of electrochemical properties of PAS material, the PAS material is one of the most suitable materials for electrodes of a polymer battery.