• Title/Summary/Keyword: pyrolysis system

Search Result 210, Processing Time 0.025 seconds

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

The Preparation and Properties of Petroleum Sulfonate Dispersant (열분해 잔유를 원료로 한 분산제의 제조 및 특성)

  • Choi, Sang-Won;Kim, Eun-Young;Chang, Woo-Seok;Kim, Viktor;Moon, Jang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.490-494
    • /
    • 2007
  • Dispersants were prepared from petroleum pyrolysis residual oil (PPRO) through sulfonation. Without employing a conventional polynaphthalene sulfonate formaldehyde condensate (PNS) process, the dispersants (NPS) were synthesized by a simpler process only in 2 h. The chemical structure of new dispersant, which has various naphthalene derivative groups, was similar to PNS conformed by UV-visible spectroscopy curves. The new dispersants demonstrated high dispersing ability in inorganic suspension ; cement, $Fe_2O_3$, and $CaCO_3$.

The Gasification & Melting Treatment Technology of Waste (폐기물 열분해 가스화용융 기술)

  • Huh, Il-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.133-138
    • /
    • 2005
  • The worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary to adopt gasification & melting system to prevent the land pollution and to solve the problem of landfill area. Among several thermal waste treatment processes gasification and melting system is the representative process which can transfer waste to resources such as syn-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, pyrolysis, gasification and melting.

  • PDF

A Study on the Characteristics of FDS Heat Release Rate Predictions for Fire involving Solid Combustible Materials in a Closed Compartment (밀폐된 구획 내 복합소재 고체 가연물의 연소시 열방출률의 FDS 예측 특성)

  • Hong, Ter-Ki;Roh, Beom-Seok;Park, Seul-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.349-356
    • /
    • 2020
  • The heat release rate (HRR) and fire growth rate of fire for the solid combustibles consisting of multi-materials was measured through the ISO 9705 room corner test, and the computational analysis in a closed compartment was performed to simulate a fire using the heat release rate prediction model provided by a Fire Dynamics Simulator (FDS). The method of predicting the heat release rate provided by the FDS was divided into a simple model and a pyrolysis model. Each model was applied and computational analysis was performed under the same conditions. As the solid combustible consisting of multi-materials, a cinema chair composed mostly of PU foam, PP, and steel was selected. The simple model was over-predicted compared to the predicted heat release rate and fire growth rate using the pyrolysis model in a closed compartment.

A Study on the Preparation of MgO-Al2O3-SiO2 System Ceramic Powders by Spray Pyrolysis Method (분무열분해법에 의한 MgO-Al2O3-SiO2계 화합물의 분체합성 및 그 특성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.397-407
    • /
    • 1988
  • Spinel, mullite and cordierite powders have synthesized from Mg(NO3)2.6H2O, Al(NO3).9H2O and SiCl4 solution by spray pyrolysis method. The two-fluid nozzle was used as an atomizer. The powders of sinel and mullite were synthesized above 80$0^{\circ}C$, but the cordierite composition was noncrystalline for all synthersizing temperature. Those noncrystalline powders were crystallized to $\alpha$-cordierite during calcining at 130$0^{\circ}C$ for 2hrs. The synthesized spinel, mullite and cordierite powders seem to be consisted of agglomerated hollow spherical particles. For all powders, the particle size ranged from submicron to about 3${\mu}{\textrm}{m}$ and mean particle size was about 1.4${\mu}{\textrm}{m}$ in diameter. The specific surface area values of spinel, mullite and cordierite powders were maximum for powders prepared at 100$0^{\circ}C$, and those were 45.9, 25.8 and 13.6$m^2$/gr, respectively.

  • PDF

Study on Operation Characteristics of Waste Tire Pyrolysis Demonstration Plant with Moving Disk Tube Reactor System (디스크 이동식 폐타이어 열분해 실증 설비의 운전 특성 고찰)

  • Ha, Hyun-Jung;Kim, Seong-Yeon;Kim, Ki-Kyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.157-160
    • /
    • 2008
  • 본 연구에서는 디스크 이동식 폐타이어 열분해 실증 설비(10톤/일)를 설계, 제작 그리고 시운전을 통하여 열분해 설비의 안정적인 연속 운전이 가능함을 확인하였다. 시운전 결과 반응기 내부 온도는 $500{\sim}600^{\circ}C$, 내부 압력은 $-80{\sim}-100mmHg$, 체류시간은 $60{\sim}90min$ 범위에서 안정적인 열분해가 일어났다. 또한 이번 과제 수행을 통해NC 가스의 연소기를 개발 적용하여 NC 가스의 열분해 열원으로 사용 가능성을 확인하였으며, NC 가스 연소 시 대기 측정을 통하여 규제치도 만족함을 확인할 수 있었다. 지금까지 나온 결과는 장기 연속 운전과 scale-up을 위한 기초 자료가 될 것이다.

  • PDF

Spectroscopic Study of the Ã1A" - X~1A' System of CHBr

  • Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.905-908
    • /
    • 2011
  • We report fluorescence excitation and emission spectra of the CHBr molecule generated via pyrolysis of $CH_3Br$ in a molecular beam experiment. The 193 nm attenuation cross sections were estimated from the reduction of the CHBr signal as a function of the excimer laser fluence. The derived 193 nm absorption cross section for CHBr [$(3.24{\pm}0.59){\times}10^{-17}\;cm^2$] is slightly higher than the absorption cross section previously determined for CHCl [$(2.6{\pm}0.8){\times}10^{-17}\;cm^2$], but the difference is within the estimated uncertainties in the measured cross section.

Electrochemical Properties of Carbonized Phenol Resin (탄화된 페놀레진의 전기화학적 성질)

  • 김한주;박종은;홍지숙;류부형;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.629-632
    • /
    • 1999
  • For replacing Li metal ai Lithium ton Bakery(LIB) system. we used carbon powder material which prepared by pyrolysis of phenol resin as starting material. It became amorphous carbon by pyrolysis through it\`s self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. however it has a problem with structural destroy causing weak carbon-carbon bond. So. we used ZnCl$_2$ as the pore-forming agent. This inorganic salt used together with the resin serves not only as the pore-forming agent to form open pores, which grow Into a three-dimensional network structure in the cured material, foul also as the microstructure-controlling agent to form a loose structure dope with bulky dopants. We analyzed SEM in order to find to different of structure. and can calculate distance of interlayer. CV test showed oxidation and reduction

  • PDF

Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood (CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.

Characterization of Bio-oils Produced by Fluidized Bed Type Fast Pyrolysis of Woody Biomass (목질바이오매스의 급속열분해에 의해 생성된 바이오오일의 특성 분석)

  • Choi, Joon-Weon;Choi, Don-Ha;Cho, Tae-Su;Meier, Dietrich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.36-43
    • /
    • 2006
  • Using fluidized bed type fast pyrolysis system (capacity 400 g/h) bio-oils were produced from beech (Fagus sylvatica) and softwood mixture (spruce and larch, 50:50). The pyrolysis was performed for 1~2 s at the temperature of $470{\pm}5^{\circ}C$. Pyrolysis products consisted of liquid form of bio-oil, char and gases. In beech wood bio-oil was formed to ca. 60% based on dry biomass weight and the yield of bio-oil was 49% in soft wood mixture. The moisture contents in both bio-oils were ranged between 17% and 22% and the bio-oil's density was measured to $1.2kg/{\ell}$. Bio-oils were composed of 45% carbon, 47% oxygen, 7% hydrogen and lower than 1% nitrogen,which was very similar to those of original biomass. In comparison with oils from fossil resources, oxygen content was very high in bio-oils, while no sulfur was found. More than 90 low molecular weight components, classified to aromatic and non aromatic compounds, were identified in bio-oils by gas chromatographic analysis, which amounted to 31~33% based on the dry weight of bio-oils.