• Title/Summary/Keyword: pyranometer

Search Result 36, Processing Time 0.026 seconds

The distribution of Solar Irradiation at the surface (지표면에서의 태양 복사 분포)

  • Lee, Kyu-Tae;Choi, Young-Jin;Lee, Won-Hack;Jee, Jun-Bum;Zo, Il-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.110-114
    • /
    • 2009
  • The model to calculate the solar radiation at the surface was developed and the annual global solar radiation calculated by the model was compared with the KMA(Korea Meteorological Administration) surface measured data The difference between calculated and measured values was distinguished clearly because of the calibration problem of the pyranometer, but the global distribution of solar radiation calculated by the model was very similar to NREL(National Renewable Energy Laboratory) result of USA.

  • PDF

A REPRESENTATIVITY TEST OF THE SURFACE SOLAR INSOLATION THROUGH SATELLITE OBSERVATION

  • Yeom, Jong-Min;Park, Youn-Young;Kim, Young-Seup;Han, Kyung-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.655-659
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a 5km ${\times}$ 5km spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with 3${\times}$3, 5${\times}$5, 7${\times}$7, 9${\times}$9, 10${\times}$10, 11${\times}$11, 13${\times}$13 pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

  • PDF

Characteristics and Error Analysis of Solar Resources Derived from COMS Satellite (기상청 천리안 위성 자료를 활용한 태양광 기상자원 특성 및 오차 분석)

  • Lee, Su-Hyang;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • The characteristics of solar resources in South Korea were analyzed by comparing the solar irradiance derived from COMS (Communication, Ocean and Meteorological Satellite) with in-situ ground observation data (Pyranometer). Satellite-derived solar irradiance and in-situ observation showed general coincidence with correlation coefficient higher than 0.9, but the satellite observations tended to overestimate the radiation amount compared to the ground observations. Analysis of hourly and monthly irradiance showed that relatively large discrepancies between the satellite and ground observations exist after sunrise and during July~August period which were mainly attributed to uncertainties in the satellite retrieval such as large atmospheric optical thickness and cloud amount. But differences between the two observations did not show distinct diurnal or seasonal cycles. Analysis of regional characteristics of solar irradiance showed that differences between satellite and in-situ observations are relatively large in metrocity such as Seoul and coastal regions due to air pollution and sea salt aerosols which act to increase the uncertainty in the satellite retrieval. It was concluded that the satellite irradiance data can be used for assessment and prediction of solar energy resources overcoming the limitation of ground observations, although it still has various sources of uncertainty.

Calibration of Pyranometer with Solar Radiation Intercomparison Observation at Research Institute for Radiation-Satellite, Gangneung-Wonju National University (강릉원주대학교 복사-위성연구소에서 실외 비교관측을 통한 전천일사계 교정)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae;Yoo, Myeong-Seon;Lee, Yong-Joo;Jang, Jeong-Pil
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.135-148
    • /
    • 2019
  • Although the technology for the observation of solar radiation is rapidly developing worldwide, in Korea the guidelines for comparing observations of solar radiation are only now under preparation. In this study, a procedure for intercomparison observations of solar radiation was established which accounts for meteorological and geographical conditions. The intercomparisons among observations by national reference pyranometers were carried out at the Asia Regional Radiation Center, Japan, in 2017. Recently, the result of the calibration of the reference pyranometer of the Korean Meteorological Administration (KMA) has been reported. Using the KMA pyranometer as a reference, comparisons between observations and calibrations were carried out for the standard (B to J) pyranometers of the KMA, and for the reference (A) and the standard pyranometers of the Gangneung-Wonju National University. The intercomparisons were carried out between October 24 and October 25, 2018. The sensitivity constants were adjusted according to the results of the data analysis performed on October 24. On October 25, a post-comparison observation was also performed, and the data of the participating pyranometers were verified. The sensitivity constants were calculated using only data corresponding to a solar radiation of $450.0W\;m^{-2}$ or higher. The B and I pyranometers exhibited a small error (${\pm}0.50W\;m^{-2}$), and the applied sensitivity constants were in the range $0.08-0.16{\mu}V(W\;m^{-2})^{-1}$. For the C pyranometer, the adjustment of the sensitivity constant was the largest, i.e., $-0.16{\mu}V(W\;m^{-2})^{-1}$. As a result, the nine candidate pyranometers could be calibrated with an average error of $0.06W\;m^{-2}$ (0.08%) with respect to the KMA reference, which falls within the allowed tolerance of ${\pm}1.00%$ (or ${\pm}4.50W\;m^{-2}$).

Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea (일사 관측 자료에 의한 남한의 태양복사 시공간 분포)

  • Jee, Joon-Bum;Kim, Yeong-Do;Lee, Won-Hak;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.720-737
    • /
    • 2010
  • This study is to analyze the temporal and spatial distributions of solar radiation in South Korea. Solar radiation data is observed every minute at 22 KMA (Korea Meteorological Administration) stations using pyranometer from January 2000 to August 2007. These data were calibrated using intensive comparative observation and solar radiation model. Intensive comparative observations are accomplished at 22 KMA stations between KNU (Kangnung (Gangneung-Wonju) National University) standard and station instruments during the month of August 2007. The solar radiation of a clear sky mainly is affected by precipitable water, solar altitude and geological height. Also old (raw) data is corrected by the solar radiation model only about clear day and is revised based on the temporal trend of instrument's sensitivity decrease. At all periods and all stations, differences between raw data (13.31 MJ/day) and corrected data (13.75 MJ/day) are 0.44 MJ/ day. So, the spatial distribution of solar radiation is calculated with seasonal and annual mean, and is the relationship with cloud amount is analyzed. The corrected data show a better consistency with the cloud amount than the old data.

Estimation of the Sea Surface Radiation from GMS-5 Visible Data (GMS-5 가시영역 자료를 이용한 해면 일사량 추정)

  • Park, Kyung-Won;Kwon, Byung-Hyuk;Kim, Young-Sup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Surface solar radiation over the sea is estimated using the visible and infrared spin scan radiometer (VISSR) data onboard Geostationary Meteorological Satellite(GMS)-5 from January 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of $5km{\times}5km$ grid. The island pyranometer operated by the Japan Meteorological Agency(JMA) is used to validate the estimated insolation. The root mean square error of the hourly estimated insolation is $104W/m^2$ with 0.91 of the correlation coefficient. In the variability of the hourly solar radiation investigated around the Korean Peninsula, the maximum value of solar radiation is found in June at the Yellow Sea and the East Sea, while in August at the South Sea because of low pressure conditions and front in June.

  • PDF

Evaluating Solar Light Collectors for Use in Closed Plant Production Systems (폐쇄형 식물생산 시스템에서 태양광 채광시스템 연구)

  • Lee, Sanggyu;Lee, Jaesu;Lee, Hyundong;Baek, Jeonghyun;Rho, Siyoung;Hong, Youngsin;Park, Jongwon
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.521-526
    • /
    • 2019
  • In this study, a solar light collector that collects and transmits solar light required for crop production in a closed plant production system was developed. The solar light collector consisted of a Fresnel lens for collecting solar light, and a tracking actuator for tracking solar light from sunrise to sunset to increase the light collection efficiency. The optical fiber that transmitted solar light was made of Glass Optical Fiber (GOF), and it had an excellent optical transmission rate. After collecting the solar light, the amount of light was measured at 5, 10, 15, 20, 25, and 30 cm distances from the GOF through the darkroom by using a light sensor logger connected to a quantum and pyranometer sensor. Compared with solar light, the light intensity of pyranometer sensor measured at 5 cm was 114% higher than solar light, and 61% at 10 cm. In addition, it was observed that it is possible to transmit the necessary amount of light for growing crops up to about 15 cm (as over 22%) through GOF. Therefore, adding diffusers to the solar light collector should be expected to replace artificial light in plant factories or plug seedlings nurseries for leafy vegetables. More studies on the solar light collection devices and the light transmission devices that have high light collection efficiency should be conducted.

Solar Radiation Measurement and Data Quality Management (태양자원 측정 및 데이터 품질관리)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.63.2-63.2
    • /
    • 2010
  • Solar radiation data are used in several forms and for a variety of purposes. The most detailed information we have is beam and diffuse solar radiation on a horizontal surface, by hours, which is useful in simulations of solar processes. Daily data are more often available and monthly total solar radiation on horizontal surface can be used in some process design methods. However, as performance is generally not linear with solar radiation, the use of average may lead to serious errors if non-linearities ara not taken into account. It is also possible to reduce radiation data to more manageable forms by statistical methods. The control of the quality of most measurements is relegated to the control of the measuring instruments and measuring processes themselves. An accurate measurement will usually result from the use of a high-quality instrument that has been accurately calibrated and is properly used by a qualified individual.

  • PDF

Estimation of Insolation over the Oceans around Korean Peninsula Using Satellite Data

  • Park, Kyung-Won;Kim, Young-seup;Sang, Chung-Hyo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.227-230
    • /
    • 1999
  • Surface solar radiation over the sea is estimated using Visible and Infrared Spin Scan Radiometer data onbord Geostationary Meteorological Satellite(GMS) 5 for January, 1997 to December 1997 in clear and cloudy conditions. The hourly insolation is estimated with a spatial resolution of 5$\times$ 5 km grid. The island pyranometer belonging to the Japan Meteorological Agency is used for validation of the estimated insolation. It is shown that the estimated hourly insolation has RMSE(root mean square) error of 104 W/$m^2$. The variability of the hourly solar radiation was investigated on 3 areas over seas around Korean Peninsula. The solar radiation of East Sea is similar to Yellow Sea. The maximum value of solar radiation is on June of year. The maximum value in south sea is on August because weather is poor by low pressure and front in June

  • PDF

MPPT Performance Analysis of the PV Boost Converter using Solar Irradiance DATA (일사량 데이터를 이용한 태양광 부스트 컨버터의 MPPT 성능분석)

  • Kim, Hak-Soo;Kang, Sung-Kwan;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.89-90
    • /
    • 2017
  • 본 논문에서는 일사량 데이터를 이용한 태양광 부스트 컨버터의 MPPT 성능분석에 대한 연구를 제안한다. 실외 실험을 통해 일사계(Pyranometer)로 측정한 일사량 데이터와 그에 따른 태양광 패널의 출력 데이터를 검토하여 부스트 컨버터의 MPPT 성능을 테스트 하였으며, 측정한 일사량 데이터를 토대로 수행한 시뮬레이션과 실험결과를 비교 분석하였다.

  • PDF