• Title/Summary/Keyword: pyramid type

Search Result 73, Processing Time 0.028 seconds

Pyramid and Half-Sphere Type of Surface Texturing for Si-Solar Cell (실리콘 태양전지의 피라미드와 반구형 표면 조직화)

  • Pyo, Dae-Seong;Jo, Jun-Hwan;Hong, Pyo-Hwan;Lee, Jong-Hyun;Kim, Bonghwan;Cho, Chan-Seob
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.433-438
    • /
    • 2013
  • In this paper, we found surface shapes are affected by several parameters of RIE, such as RF power, pressure, temp, and process times. The reflectance of pyramid and half sphere structures show differences among shapes, size, height, and depth of those structures. We made about $1{\mu}m$ pyramid and half sphere shapes of silicon surface with RIE. For comparing the reflectance, pyramid and half sphere structures are fabricated with same height. Pyramid structure cell shows higher cell efficiency of 12.5% by 1.1% than one of half sphere structure of 11.4%. The light absorption is more increased through the pyramid structure than half sphere structure.

Designing Stacking Facilities of Pyramid Type (피라미드 형태의 적재장 최적 설계)

  • Park, Twae Kyung;Kim, Kap Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.227-236
    • /
    • 2007
  • This paper proposes a method for designing stacking warehouses of pyramid type which can be found in storage rooms for steel coils, paper rolls, and drums for oils. Formulas were derived for estimating the expected travel time of cranes and the expected time for rehandling activities. Based on the derived formulas, this study derives the cost function for determining the optimal numbers of rows, bays, tiers of stacks under the condition that the requirement for storage space is satisfied. Numerical examples were given.

A Study on Design of High Luminance Hybrid LED Package and Ultra-fine Machining of Optical Pattern (고효율 Hybrid LED 패키지 설계 및 초정밀 광학패턴 가공에 관한 연구)

  • Jeon, E.C.;Je, T.J.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.474-479
    • /
    • 2010
  • Newly suggested hybrid LED package can reduce the number of LED processes and enhance light efficacy in virtue of its integrated optical patterns. Square-type pyramid pattern was chosen for the integrated optical pattern in this study, and it was proved that the pattern enhances illuminance about three times and luminance about two and half times by optical simulation. Square-type pyramid patterns of 0.02mm height and 0.04mm pitch were successively machined on a copper mold which is necessary for imprinting the integrated pattern. Hybrid LED package with integrated optical pattern will be manufactured with ultra-fine machined mold in future study.

Forming Analysis of L-type Bending of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 L형 굽힘 성형해석)

  • Chung, W.J.;Kim, J.H.;Lim, S.J.;Yoo, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A condensed model is proposed for the simulation of forming of sandwich sheet with pyramid core. A corresponding finite element analysis for L-type bending is carried out to prove the accuracy and the effectiveness. Simulation results are compared with those of experiment. Deformation shape and post-buckling behavior by simulation are in good agreement with those of experiment for the considerable range of deformation. From the comparison of force-displacement curve, it is shown that the proposed model shows good prediction of the forming force compared to the experiment. Thus, the effectiveness of the proposed method is sufficiently demonstrated.

  • PDF

A Study on the Compressive Characteristics of Sandwich Sheet with Pyramid Core in the Thickness Direction (피라미드 코어를 가진 샌드위치 판재의 두께 방향 압축 특성에 대한 연구)

  • Cho, K.C.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.635-640
    • /
    • 2006
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the compressive pressure in the thickness direction is a dominating factor in the formability of sandwich sheet. In this study, sandwich sheet with pyramid type core is considered. For the compressive characteristics in the thickness direction, experiments and finite element simulations are carried out. In the experiment, deformation behavior is observed and discussed as the compression proceeds. It is shown that a corresponding finite element simulation can give a reasonable agreement with experiment in terms of maximum pressure. However, simulation shows some discrepancy from the experiment in terms of compressive pressure-displacement characteristics. The reasons for this discrepancy are studied in the geometrical imperfectness of sandwich sheet. It is also observed that most of deformation is dominated by buckling mode of pyramid legs.

A Study on the Stability of Subsidence for the Foundation of Rectangular Pyramid (사각 피라미드 기초의 침하 안정성에 관한 연구)

  • Kim, Seong-Pil;Kim, Doo-Hwan;Song, Kwan-Kwon;Lee, Ki-Sun;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • In this study, the settlement of concrete rectangular pyramid foundation on soft ground is investigated based on a finite element analysis. considering the grounding load and the grounding area of square pyramid foundation, we compensate the insufficient design bearing capacity and investigated the effect of settlement by load. Based on this study, it is found that the rectangular pyramid foundation shows the smallest settlement of three different type of foundations. As a result of this study, it was resulted that the square pyramid foundations were more effective than the crushed stone foundations by 18%. These results show that the ground pressures of the square pyramid bases are divided into horizontal and vertical stresses, so it is analyzed that the horizontal stress builds up the rigid ground on the foundation of the structure and distributes the load widely to increase the resistance to the overhead load.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

Development of Analysis Method for Forming of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 성형해석기술 개발)

  • Lim, S.J.;Kim, J.H.;Seong, Dae-Yong;Yang, Dong-Yeol;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.266-267
    • /
    • 2007
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. In order to simulate forming of sandwich sheet with pyramid core, an effective simulation method is required. Compared to the expensive model using solid elements, cost effective model using simplified elements such as shells and beams is developed. By comparing two models in terms of the cost and accuracy for unit cell deformation, a developed model shows some advantages over the model using solid elements. Evolution of two kind of forming limits, face buckling and core buckling are successfully expressed by developed model. Developed model is also applied in the simulation of square cup drawing and L-type bending. The corresponding experiments are carried out. Deformation shape and wrinkling behavior are compared and discussed. It is found that simulation results using a developed model are in good agreement with experiments.

  • PDF

Vehicle/track dynamic interaction considering developed railway substructure models

  • Mosayebi, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.775-784
    • /
    • 2017
  • This study is devoted to developing many new substructure models for ballasted railway track by using the pyramid model philosophy. As the effect of railway embankment has been less considered in the previous studies in the field of vehicle/track interaction, so the present study develops the pyramid models in the presence of railway embankment and implements them in vehicle/track interaction dynamic analyses. Considering a moving car body as multi bodies with 10 degrees of freedom and the ballasted track including rail, sleeper, ballast, subgrade and embankment, two categories of numerical analyses are performed by considering the new substructure systems including type A (initiation of stress overlap areas in adjacent sleepers from the ballast layer) or type B (initiation of stress overlap areas in adjacent sleepers from the subgrade layer). A comprehensive sensitivity analyses are performed on effective parameters such as ballast height, sleepers spacing and sleeper width. The results indicate that the stiffness of subgrade, embankment and foundation increased by increasing the ballast height. Also, by increasing the ballast height, rail and ballast vertical displacement decreased.