• Title/Summary/Keyword: pyr operon

Search Result 5, Processing Time 0.016 seconds

Regulation of Expression of the Bacillus caldolyticus Pyrimidine Biosynthetic Operon by pyrR Gene, an Autogenous Regulator

  • Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.120-125
    • /
    • 2001
  • The pyrR gene of the pyrimidine biosynthesis (pyr) operon of the thermophile Bacillus caldolyticus, encoding a uracil phosphoribosyltransferase (UPRTase), turned to rely as a pyr operon regulator. It has been proposed that PyrR mediates transcriptional termination-antitermination at three intercistronic regions of the par operon (S.-Y Ghim and J. Neuhard, J. Bacteriol.,176, 3698-3707, 1994). In this research, a plasmid carrying the pyrR region of B. caldolyticus could restore a pyrimidine regulation in a pyrR mutant of B. subtilis. Expression of pyrR was found to increase 6-7 fold during pyrimidine starvation. Additionally, a highly conserved nucleotide sequence which may constitute the binding site for a PyrR protein (PyrR-binding loop) in transcript was staggested. Alternative antiterminator and terminator structures involving three conserved motifs in front of the pyrR, pyrP and pyrB genes, respectively, are proposed to account for the observed regulation pattern.

  • PDF

Molecular Regulation of Pyrimidine Nucleotide Synthesis in Bacterial Genomes

  • Ghim, Sa-Youl
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.165-168
    • /
    • 2001
  • Regulation of pyrimidine nucleotide synthesis has been studied extensively in enteric bacteria and Bacillus species. Varieties of control modes have been proposed for regulation of pyrimidine nucleotide biosynthetic (pyr) genes. In Bacillus caldolyticus and B. subtilis, it has been proved that pyrimidine de novo biosynthetic operon is controlled by a regulatory protein PyrR-mediated attenuation. Another Gram-positive bacteria including Enterococcus faecalis, Lactobacillus plantarum, and wctococcus lactis have been found to constitute a pyr gene cluster containing the pyrR gene. In addition, it has been proposed that the structure of the 5' leader region of the Gram-negative extreme thermophile Thermus strain Z05 pyr operon provides a novel mechanism of PyrR-dependent coupled transcription-translation attenuation. Bacterial genome sequencing projects have identified the PyrR homologues in Haemophilus influenzae, Synechocystis sp., Mycobacterium tuberculosis, Streptococcus pneumoniae, S. pyogenes, and Clostridium acetobutylicum, which are currently investigating for their physiological functions.

  • PDF

Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach (프로테옴 분석에 의한 Bacillus subtilis PyrR 돌연변이체의 특성)

  • Seul, Keyung-Jo;Cho, Hyun-Soo;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The Bacillus subtilis pyrimidine biosynthetic (pyr) operon encodes all of the enzymes for the de novo biosynthesis of Uridine monophosphate (UMP) and additional cistrones encoding a uracil permease and the regulatory protein PyrR. The PyrR is a bifunctional protein with pyr mRNA-binding regulatory funtion and uracil phosphoribosyltransferase activity. To study the global regulation by the pyrR deletion, the proteome comparison between Bacillus subtilis DB104 and Bacillus subtilis DB104 ${\Delta}$pyrR in the minimal medium without pyrimidines was employed. Proteome analysis of the cytosolic proteins from both strains by 2D-gel electrophoresis showed the variations in levels of protein expression. On the silver stained 2D-gel with an isoelectric point (pI) between 4 and 10, about 1,300 spots were detected and 172 spots showed quantitative variations in which 42 high quantitatively variant proteins were identified. The results showed that production of the pyrimidine biosynthetic enzymes (PyrAA, PyrAB, PyrB, PyrC, PyrD, and PyrF) were significantly increased in B. subtilis DB104 ${\Delta}$pyrR. Besides, proteins associated carbohydrate metabolism, elongation protein synthesis, metabolism of cofactors and vitamins, motility, tRNA synthetase, catalase, ATP-binding protein, and cell division protein FtsZ were overproduced in the PyrR-deficient mutant. Based on analytic results, the PyrR might be involved a number of other metabolisms or various phenomena in the bacterial cell besides the pyrimidine biosynthesis.

Cloning and Characterization of the pyrH Gene Encoding UMP-Kinase from Lactobacillus reuteri ATCC 55739

  • PARK JAE-YONG;NAM SU JIN;KIM JONG-HWAN;JEONG SEON-JU;KIM JUNG KON;HA YEONG LAE;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.525-531
    • /
    • 2005
  • From a genomic library of Lactobacillus reuteri ATCC 55739, one clone, NE347, carrying a pyrH gene encoding UMP kinase, was identified. pNE347 carried a 1.88 kb EcoRI fragment and the pyrH was located in the middle of the insert. pyrH ORF was 723 bp in size and capable of encoding UMP kinase composed of 240 amino acid residues. tsf encoding an elongation factor-Ts and frr encoding a ribosomal recycling factor were present upstream and downstream of pyrH, respectively. When introduced into E. coli KUR1244, a pyrH-negative strain, pNE347 restored the ability to grow at $42^{\circ}C$, indicating that pyrH from L. reuteri synthesized functional UMP kinase in E. coli. Northern blot experiment showed that pyrH and frr were cotranscribed as a 1.4 kb single transcript. pyrH was overexpressed in E. coli by using a pET26b(+) vector, and a major 25 kDa protein band appeared on SDS-polyacrylamide gel.

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.