Browse > Article

Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach  

Seul, Keyung-Jo (School of Life Sciences, Kyungpook National University)
Cho, Hyun-Soo (Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo)
Ghim, Sa-Youl (School of Life Sciences, Kyungpook National University)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.1, 2011 , pp. 9-19 More about this Journal
Abstract
The Bacillus subtilis pyrimidine biosynthetic (pyr) operon encodes all of the enzymes for the de novo biosynthesis of Uridine monophosphate (UMP) and additional cistrones encoding a uracil permease and the regulatory protein PyrR. The PyrR is a bifunctional protein with pyr mRNA-binding regulatory funtion and uracil phosphoribosyltransferase activity. To study the global regulation by the pyrR deletion, the proteome comparison between Bacillus subtilis DB104 and Bacillus subtilis DB104 ${\Delta}$pyrR in the minimal medium without pyrimidines was employed. Proteome analysis of the cytosolic proteins from both strains by 2D-gel electrophoresis showed the variations in levels of protein expression. On the silver stained 2D-gel with an isoelectric point (pI) between 4 and 10, about 1,300 spots were detected and 172 spots showed quantitative variations in which 42 high quantitatively variant proteins were identified. The results showed that production of the pyrimidine biosynthetic enzymes (PyrAA, PyrAB, PyrB, PyrC, PyrD, and PyrF) were significantly increased in B. subtilis DB104 ${\Delta}$pyrR. Besides, proteins associated carbohydrate metabolism, elongation protein synthesis, metabolism of cofactors and vitamins, motility, tRNA synthetase, catalase, ATP-binding protein, and cell division protein FtsZ were overproduced in the PyrR-deficient mutant. Based on analytic results, the PyrR might be involved a number of other metabolisms or various phenomena in the bacterial cell besides the pyrimidine biosynthesis.
Keywords
Bacillus subtilis; PyrR-deficient Mutant; 2D-PAGE; Proteome;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Ghim, S-Y. and R. L. Switzer. 1996. Characterization of cisacting mutations in the first attenuator region of the Bacillus subtilis pyr operon that are defective in pyrimidine-mediated regulation of expression. J. Bacteriol. 178: 2351-2355.   DOI
2 Ghim, S-Y. and R. L. Switzer. 1996. Mutations in Bacillus subtilis PyrR, the pyr regulatory protein, with defects in regulation by pyrimidines. FEMS Microbiol. Lett. 137: 13-18.   DOI   ScienceOn
3 Grabner, G.K. and R. L. Switzer. 2003. Kinetic studies of the uracil phosphoribosyltransferase reaction catalyzed by the Bacillus subtilis pyrimidine attenuation regulatory protein PyrR. J. Biol. Chem. 278: 6921-6927.   DOI
4 Justesen, J. and J. Neuhard. 1975. pyrR identical to pyrH in Salmonella typhimurium: control of expression of the pyr genes. J. Bacteriol. 123: 851-854.
5 Kawamura, F. and R. H. Doi. 1984. Construction of Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442-444.
6 Lerner, C. G. and R. L. Switzer. 1986. Cloning and structure of the Bacillus subtilis aspartate transcarbamylase gene (pyrB). J. Biol. Chem. 261: 11156-11165.
7 Lerner, C. G., B. T. Stephenson, and R. L. Switzer. 1987. Structure of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster. J. Bacteriol. 169: 2202-2206.   DOI
8 Lu, Y. and R. L. Switzer. 1996. Evidence that the Bacillus subtilis pyrimidine biosynthetic regulatory protein PyrR acts by binding to pyr mRNA at three sites in vivo. J. Bacteriol. 178: 5806-5809.   DOI
9 Lu, Y. and R. L. Switzer. 1996. Transcriptional attenuation of the Bacillus subtilis pyr operon by the PyrR regulatory protein and uridine nucleotides in vitro. J. Bacteriol. 178: 7206- 7211.   DOI
10 Lu, Y., R. J. Turner, and R. L. Switzer. 1996. Function of the RNA secondary structures in the regulation of the Bacillus subtilis pyr operon expression. Proc. Natl. Acad. Sci. 93: 14462-14467.   DOI   ScienceOn
11 Aldritt, S. M., P. Tien, and C. C. Wang. 1985. Pyrimidine salvage in Giardia lamblia. J. Exp. Med. 161: 437-445.   DOI   ScienceOn
12 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72: 248- 254.   DOI   ScienceOn
13 Bonner, E. R., J. N. D'Elia, B. K. Billips, and R. L. Switzer. 2001. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res. 29: 4851-4865.   DOI
14 Chander, P., K. M. Halbig, J. K. Miller, C. J. Fields, H. K. S. Bonner, G. K. Grabner, and R. L. Switzer. 2005. Structure of the nucleotide complex of PyrR, the pyr Attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides. J. Bacteriol. 187: 1773-1782.   DOI   ScienceOn
15 Fields, C. J. and R. L. Switzer. 2007. Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression. J. Bacteriol. 189: 6236-6245.   DOI   ScienceOn
16 Ghim, S-Y. 1993. The pyr operon of the themophile Bacillus caldolyticus encodes both de novo and salvage enzymes for UMP synthesis, Ph. D. thesis, University of Copenhagen.
17 Ghim, S-Y. and J. Neuhard. 1994. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J. Bacteriol. 176: 3698-3707.   DOI
18 Switzer, R. L. and R. J. Turner. 1998. A widespread and mechanistically versatile regulator of bacterial pyr genes. Paths to Pyrimidines, 6: 45-52.
19 Tomchick, D. R., R. J. Turner, R. L. Switzer, and J. L. Smith. 1998. Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a bifuntional pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. Structure 6: 337-350.   DOI   ScienceOn
20 Turner, R. J., E. R. Bonner, G. K. Grabner, and R. L. Switzer. 1998. Purification and characterization of Bacillus subtilis PyrR, a bifunctional pyr mRNA-binding attenuation protein/ uracil phosphoribosyltransferase. J. Biol. Chem. 273: 5932- 5938.   DOI
21 Turner, R. J., Y. Lu, and R. L. Switzer. 1994. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J. Bacteriol. 176: 3708-3722.   DOI
22 Lu, Y., R. J. Turner, and R. L. Switzer. 1995. Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression. J. Bacteriol. 177: 1315-1325.   DOI
23 Martinussen, J., P. Glaser, P. S. Andersen, and H. H. Saxild. 1995. Two genes encoding uracil phosphoribosiltransferase are present in Bacillus subtilis. J. Bacteriol. 177: 271-274.   DOI
24 Martinussen, J., J. Schallert, B. Andersen, and K. Hammer. 2001. The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J. Bacteriol. 183: 2785-2794.   DOI   ScienceOn
25 Neuhard, J. and P. Nygaard. 1987. Purines and pyrimidines, In: Escherichia coli and Salmonella typimurium : Cellular and Molecular Biology. (Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M. and Umbarger, H.E., Eds.), pp. 445-473. American Society for Microbiology, Washinton, D.C..
26 Nygaard, P. 1993. Purine and pyrimidine salvage pathways. In: Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (Sonnenshein, A. L., Hoch, J. A., and Losick, R., Eds.), pp.359-378. American Society for Microbiology, Washington, D.C..
27 Oakley, B. R., D. R. Kirsch, and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363.   DOI   ScienceOn
28 Quinn, C. L, B. T. Stephenson, and R. L. Switzer. 1991. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J. Biol. Chem. 266: 9113.
29 Robert, J. T. 1996. Autogenous transcriptional attenuation of de novo pyrimidine biosynthesis in Bacillus subtilis, Ph. D, thesis, University of Illinois at Urbana-Champaign.
30 Savacool, H. K. and R. L. Switzer. 2002. Characterization of the interaction of Bacillus subtilis PyrR with pyr mRNA by site-directed mutagenesis of the protein. J. Bacteriol. 184: 2521-2528.   DOI   ScienceOn
31 Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858.   DOI   ScienceOn
32 Spizizen, J. 1958. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA 44: 1072-1078.   DOI   ScienceOn
33 Ghim, S-Y., P. Nielsen, and J. Neuhard. 1994. Molecular characterization of pyrimidine biosysthesis genes from the thermophile Bacillus caldolyticus. Microbiol. 140: 479-491.   DOI   ScienceOn
34 Ghim, S-Y. and J. Neuhard. 1994. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J. Bacteriol. 176: 3698-3707.   DOI