• Title/Summary/Keyword: push-out 실험

Search Result 74, Processing Time 0.026 seconds

Push-out Test on Welded Angle Shear Connectors used in Composite Beams (합성보에 적용된 앵글 전단연결재의 Push-out 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Dong Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.155-167
    • /
    • 2014
  • Steel-concrete composite beam has been used for a considerable time in building construction. An essential component of a composite beam is the shear connection between the steel section and the concrete slabs, which is provided by mechanical shear connectors. A variety of shapes and devices have been in use as shear connectors. This study summarizes the results of an experimental investigation involving the testing of push-out specimens with angle shear connectors. All of 22 push-out specimens were designed to study the effect of a number of parameters on the shear capacity of angle shear connectors such as the height of the angle connector, the length of welding, and the pitch of angles. Based on the test results, a design equation was developed for predicting the shear strength of angle shear connectors.

Analysis of a Load Carrying Behavior of Shear Connection at the Interface of the Steel-Concrete Composite Beam (합성보 전단연결부의 구조거동에 대한 비교 분석)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.737-747
    • /
    • 2005
  • The connection of the slab with the steel beam and thus, the transmission of shear force at the interface of the steel-concrete composite beams is achieved with shear connectors, in general, with shear studs. The composite action through these shear studs has a significant influence on the load carrying behavior of the composite beams. The load carrying capacity of studs is determined through push-out tests. At present, the transferability of this load carrying capacity of studs to composite beams, especially in cases of partial interaction, is being questioned by experimental and theoretical investigations. In this study, a finite element model for the simulation of the behavior of the standard push-out specimen and the composite beams without the implementation of the load-slip curve of the stud connectors from the push-out test is developed. The load carrying behavior of the studs in the composite beams is estimated and compared with the results of the push-out test. The reason for the difference in the load carrying behavior of the studs in the push-out test specimen and in the composite beams is found.

Push-out Performance Test of Composite Steel Truss Deck using Light Weight Concrete (경량콘크리트를 사용한 합성 철선트러스 데크의 푸쉬 아웃 성능 실험)

  • Choi, Byong Jeong;Moon, Hyo Jin;Han, Hong Soo;Han, Kweon Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • Push-out tests were performed to evaluate the shear capacity of a composite steel truss deck slab system, called an automatic prefabrication bar-mesh system, using lightweight concrete. The six specimens were classified into three groups: DP, NDP, and Solid, according to the variations between the bar mesh and the zinc plate automatic prefabrications. This paper focused on the failure behaviors, load-displacement characteristics, and a performance comparison based on design codes.

An Experimental Study on the shear connection for UHPC Deck Bridge (초고성능 콘크리트 바닥판 교량의 전단연결부에 대한 실험적 연구)

  • Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae;Park, Sung-Young
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.29-33
    • /
    • 2011
  • The application of high performance materials for the deck can represent a fair alternative to reduce the weight of the deck and improve the econimic efficiency of the bridge even if high performance materials are costly. In UHPC(Ultra High Performance Concrete) bridges, it is necessary to verify that exiting headed stud can be used to transfer longitudinal shear forces across the steel-concrete interface. In this paper, the push-out tests are performed to analisys the composite behavior between UHPC bridge deck and steel girder. The ultimate strength of test specimens is proportional to the diameter of headed studs in push-out test for static loading. Test results show that the shear strength of headed stud is improved for the case of normal concrete bridge decks.

Shear Stiffness of Shear connections in Full-Depth Precast Concrete Deck Bridge (프리캐스트 바닥판 교량 전단연결부의 전단강성)

  • Shim, Chang Su;Chung, Chul Hun;Kim, Chul Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.749-758
    • /
    • 1998
  • The evaluation of shear stiffness of shear connection in composite bridges with CIP concrete deck is analysed. Shear stiffness of shear connection in full-depth precast concrete deck bridges is obtained from experiments. 3-dimensional finite element analyses of push-out specimen are carried out to investigate the effects of characteristics of filling material strength in shear connection on shear stiffness and local stress distribution. The load-slip relations obtained from the analyses are compared with those of experiments. The equation of initial shear stiffness of shear connection in precast concrete deck bridge is proposed. Linear analyses are performed to evaluate the effects of the shank diameter of shear connector and the strength of mortar on the characteristics of deterioration and failure load obtained by the failure criterions of each material. The failure loads are estimated and compared with test results.

  • PDF

Fatigue strength of stud shear connector considering bedding layer thickness in precast deck composite bridges (프리캐스트 바닥판 합성형 교량에서의 베딩층의 두께를 고려한 전단연결재의 피로강도)

  • Ryu, Hyung Keun;Shim, Chang Su;Chung, Chul Hun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.113-120
    • /
    • 2002
  • A shear connection in composite bridges with precast decks has considerable characteristics different from cast-in-place deck bridges such as shear pocket and bedding layer. Thus, it is necessary to build design basis of the shear connector in precast decks through the experiments. In order to estimate fatigue life of shear connector in precast deck bridges, push-out fatigue tests were conducted with parameter, bedding layer thickness. As a result of the tests, failure modes of shear connector were observed. Consequently, empirical S-N curve equations of stud shear connector in precast deck bridges were proposed in this paper.

EFFECT OF THE ADDITIONAL ETCHING PROCEDURE ON PUSH-OUT BOND STRENGTH OF ONE-STEP RESIN CEMENT (부가적 부식 과정이 단일 접착 과정 레진 시멘트의 접착 강도에 미치는 영향)

  • Kang, Soon-Il;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of additional etching procedure prior to Maxcem resin cement application in indirect restoration cementation using push-out bonding strength. One hundred and two extracted human molars were used to make indirect resin restorations of gold inlay and Synfony. These restorations were cemented using Maxcem and Variolink II. Additional etching procedures were done for one group with Maxcem. Three groups have 17 specimens in both restoration types. Push-out bond strength was measured using multi-purpose tester and calculated for bonding strength per sqaure-millimeter area. The mean bonding strength values were compared using SPSS 12.0K program for one-way ANOVA and Scheffe's Test with 95% significance. Under the condition of this study, the additional etching procedure prior to usage of Maxcem resulted in reduced bond strength for both of restoration types.

Estimation of Shear Strength of RC Shear Connection for the Steel-Concrete Composite Girder (강합성 거더용 철근콘크리트 전단연결체의 전단강도 평가)

  • Shin, Hyun Seop;You, Young Jun;Jeong, Youn Ju;Eom, In Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.229-239
    • /
    • 2010
  • For the purpose of improvement of the load carrying capacity and constructibility of the conventional steel-concrete composite girder through a effective appliance of the construction materials and optimization of the girder section, a new type section of composite girder and RC shear connection were proposed. In this study shear strength of the RC shear connection is estimated, and the characteristics of shear load-slip behaviour is analyzed. Push-out tests on shear specimens and FEM analysis with various design parameters are carried out, and results are analyzed. The results of test and FEM analysis showed that shear strength of RC shear connection is underestimated by the design provisions of the current design code. By regression analysis a empirical equation for the estimation of shear strength of RC shear connection is proposed.

Study on Fire Performance of Stud Connectors (스터드커넥터의 내화성능에 관한 연구)

  • Kim, Sung-Bae;Han, Sang-Hoon;Choi, Seng-Kwan
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.59-66
    • /
    • 2009
  • This research aims to conduct a pilot study for the in-fire performance of headed studs, commonly used in composite structures over the world. The robustness of the shear studs in fire appears to be a key element to govern the composite behaviour after a sudden local instability developed in structures such as trusses and cellular beams. In order to experimentally evaluate the residual strength of studs in fire, the standard push-out test was modified for a half of the original set-up to be equipped with a furnace. The adjustments allow the steel section to have a 3-sided exposure against fire. Under the Standard ISO fire, the modified push-out tests under loading were conducted to identify the failure mechanism of the studs in relation to temperature developments.

An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck (초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가)

  • Yoon, Ki Yong;Kim, Sang Seup;Han, Deuk Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2008
  • A simple steel-concrete composite deck is developed for preventing the lateral torsional buckling of girders that are under construction and for reducing the term of works using H-shaped rolled beams as bridge girders. A new type of shear connectors is also developed for the composite behavior between a simple steel-concrete composite deck and the rolled beams by the connecting conditions between the deck and the girders. One is a connector bolt that is lengthened and split or tightened with two nuts and the other is an I-shaped rolled beam welded on a steel plate with a number of holes punched through the web. In this study, to estimate the shear strength of those shear connectors the push-out tests are performed and the test results are compared with that of the previous studies and the codes. The result of the push-out tests of the connector bolts showed that the shear performance is similar to that of the stud connector and revealed that the equation for the shear strength in the Korean Specification of Highway Bridge overestimates the shear capacity of the connector bolt whose diameter is larger than 19mm. From the push-out tests of punched I-shaped rolled beams with varying welding amounts, with the small amount of welding, shear capacity is governed by the shear capacity of welding. On the other hand, shear capacity is governed by the size of the punched I-shaped rolled beams, regardless of the amount of welding.