• Title/Summary/Keyword: purple perilla leaf

Search Result 3, Processing Time 0.022 seconds

Binding Capacity of Chitin and Chitosan to Anthocyanin Pigment Isolated from Purple Perilla Leaves

  • Chang, Eun-Ju;Park, Sang-Won;No, Hong-Kyoon
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • The binding capacity of chitin and chitosan to anthocyanin pigmentss isolated from purple perilla leaves was inves-tigated. The pigment binding capacity increased with increasing pigment concentrations and decreasing pH without being affected by reaction temperature and particle sizes. Regression analysis revealed significantly high corre-lations between pigment binding capacity of chitin and chitosan and pigment concentration at ranges of 25-100 mg of pigment/g of sample, After 1 hr settling, release of pigment from pigmented chitin and chitosan increased with increasing pH, up to 24.9% and 17.4%, respectively, at pH 9. In general, pigment binding capacity of chitosan was higher than that of chitin. There results suggest that chitosan may be useful as a potential adsorbent capable of stabilizing anthocyanin pigment.

  • PDF

Using Phenolic Compounds and Some Morphological Characters as Distinguishing Factors to Evaluate the Diversity of Perilla Genetic Resources

  • Assefa, Awraris Derbie;Jeong, Yi Jin;Rhee, Ju-hee;Lee, Ho-Sun;Hur, On-Sook;Noh, Jae-Jong;Ro, Na-Young;Hwang, Ae-Jin;Sung, Jung-Sook;Lee, Jae-Eun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2020
  • The objectives of this study were to evaluate total phenolic content (TPC) and individual phenolic compounds in leaves of perilla genetic resources, assess whether they could be used as distinguishing factor among germplasms, and evaluate their relationship with some quantitative and qualitative morphological characters. TPC and individual phenolic compounds were determined using Folin-Ciocalteu method and UPLC-PDA system, respectively. Wide variations in TPC (7.99 to 133.70 mgGAE/g DE), rosmarinic acid (ND to 21.05 mg/g DE), caffeic acid (ND to 1.17 mg/g DE), apigenin-7-O-diglucuronide (ND to 2.21 mg luteolin equivalent (mgLUE)/g DE), scutellarein-7-O-glucuronide (ND to 5.25 mg LUE/g DE), and apigenin-7-O-glucuronide (ND to 2.81 mg LUE/g DE) were observed. Intensities of green pigment at abaxial and adaxial leaf surfaces were positively correlated with phenolic compounds whereas leaf length and width had negative correlation. Purple pigmented accessions were shorter in leaf length and width but exhibited higher amount of phenolic compounds compared to green pigmented accessions in most cases. Leaf shape was not related with content of phenolic compounds, color of leaves, and length/width of leaves. TPC and individual phenolic compounds along with morphological characters could be useful distinguishing factors for perilla genetic resources.

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) Influenced by Phosphorus Concentrations in Fertigation Solution (인산 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • This study was carried out to investigate the effect of phosphorus concentrations in fertilizer solution on growth and development of nutrient deficiency in leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Phosphorus deficiency resulted in a slow growth, lustreless leaves, suffused purple tining in older leaves and falling prematurely. Elevation of P concentrations in fertilizer solution increased the crop growth at 75 days after transplanting. The fresh weight in 0, 0.5 and 4.0 mM treatments were 0.48 g, 9.28 g, and 25.5 g, respectively, and dry weights were 0.06 g, 1.46 g and 4.13 g, respectively. The P concentrations in above ground plant tissue and petiole sap in 4.0 mM treatment were 1.78% and $2.040mg{\cdot}kg^{-1}$, respectively, at 75 days after transplanting. The soil P concentration in 4.0 mM treatment was $1.26mg{\cdot}kg^{-1}$ when it was determined by the 1:2 (sample:water) method. These results indicated that P concentrations higher than 0.3% in above ground plant tissue, $900mg{\cdot}kg^{-1}$ in petiole sap, and $0.57mg{\cdot}kg^{-1}$ in soil solution should be maintained to ensure proper growth of leaf perilla (Perilla frutesens).