• Title/Summary/Keyword: pure oxygen$CO_{2}$

Search Result 63, Processing Time 0.032 seconds

Effects of $CO_{2}$ Recirculation on Turbulent Jet Diffusion Flames with Pure Oxygen (이산화탄소 재순환이 순산소 난류제트 확산화염에 미치는 영향)

  • Cha, Min-Suk;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • Characteristics of methane jet diffusion flames using pure oxygen with recirculating $CO_{2}$ as an oxidizer were investigated experimentally. A coflow burner was considered, and the diameter of confinement was larger than that of the coflow. No stabilized flame could be observed over 75% of $CO_{2}$ volume percent. A comparison between air and $O_{2}/CO_{2}$ mixture was made in terms of liftoff velocity, flame liftoff height, and blowout conditions. As results, more stable flame could be observed with $O_{2}/CO_{2}$ mixture for the case of having similar flame temperature.

  • PDF

SIMULATION ON PURE OXYGEN COMBUSTION OF SMV FOR $CO_2$ REDUCTION (이산화탄소 저감을 위한 SMV의 순산소 연소 시뮬레이션)

  • Kim, H.Y.;Sohn, H.S.;Kim, C.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.275-277
    • /
    • 2011
  • KOGAS(Korea Gas Corporation) uses two-type vaporizers to send customers natural gas with imported LNG. In winter season, SMVs(SubMerged combustion Vaporizers) are mainly operated due to low seawater temperature. SMVs consume the natural gas of 1,520 $Nm^3/hr$ and emit a lot of $CO_2$ in winter time. If carbon taxes are activated on climate change, the tax burden will be severely heavy. Accordingly this work carried out numerical simulation with a commercail CFX code to investigate its possibility on the practical use of pure oxygen combustion of SMVs to reduce $CO_2$ and to improve its efficiency. First, a nozzle of a SMV's combustor is modelled. The combustion characteristics of Air/Fuel and Oxygen/Fuel are analyzed under folly insulated condition. Although we couldn't find the carbon reduction and the efficient elevation when the pure oxygen/fuel type was compared to the existing air/fuel one, we need a further study to investigate the effect of $CO_2$ recirculation.

  • PDF

A NUMERICAL STUDY ON THE HEAT AND FLUID FLOW IN A REGENERATIVE OXY-FUEL COMBUSTION SYSTEM (순산소 연소용 축열시스템 내에서의 열 유동 수치해석)

  • Kang, K.;Hong, S.K.;Noh, D.S.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • A pure oxygen combustion technology is crucial in Carbon Capture and Storage (CCS) technology especially in capturing of $CO_2$, where CCS will reduce 9 $GtCO_2$ by 2050, which is 19% of the total $CO_2$ reduction amount. To make pure oxygen combustion feasible, a regenerative system is required to enhance the efficiency of pure oxygen combustion system. However, an existing air combustion technology is not directly applicable due to the absence of nitrogen that occupies the 78% of air. This study, therefore, investigates the heat and fluid flow in a regenerative system for pure oxygen combustion by using commercial CFD software, FLUENT. Our regenerative system is composed of aluminium packed spheres. The effect of the amount of packed spheres in regenerator and the effect of presence or absence of a bypass of exhaust gas are investigated. The more thermal mass in regenerator makes the steady-state time longer and temperature variation between heating and regenerating cycle smaller. In the case of absence of bypass, the regenerator saturates because of enthalpy imbalance between exhaust gas and oxygen. We find that 40% of exhaust gas is to be bypassed to prevent the saturation of regenerator.

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 edge flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 Edge Flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

NO Emission Characteristics of Oxygen-Enriched Combustion with $CO_2$ Recirculation in Counterflow Diffusion Flame (대향류 화염에서 $CO_2$ 재순환 산소부화연소의 NO 배출 특성)

  • Park, June-Sung;Cho, Han-Chang;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • Numerical study is conducted to grasp the flame structure and NO emissions for a wide range of oxy-fuel combustion (covering from air blown combustion to pure oxygen combustion) and for various mole fractions of recirculated $CO_2$ in $CH4-O_2/N_2/CO_2$ counterflow diffusion flames. Special concern is given to the difference of the flame structure and NO emissions between air blown combustion and oxy-fuel combustion w/o recirculated $CO_2$ and is also focused on chemical effects of recirculated $CO_2$. Air blown combustion and oxy-fuel combustion w/o recirculated $CO_2$ are shown to be considerably different in the flame structure and NO emissions. Modified fuel oxidation reaction pathways in oxygen-enriched combustion are provided in detail compared to those in air blown combustion w/o recirculated $CO_2$. The formation and destruction of NO through Fenimore and thermal mechanisms are also compared for air blown combustion and oxyegn-enriched combustion w/o recirculated $CO_2$, and the role of the recirculated $CO_2$ and its chemical effects are discussed. Importantly contributing reaction steps to the formation and destruction of NO are also estimated in oxygen-enriched combustion in comparison to air blown combustion.

  • PDF

A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process

  • Byon, Hye-Ryung;Lim, Hyun-Seob;Song, Hyun-Jae;Choi, Hee-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2056-2060
    • /
    • 2007
  • A successful combination of “oxygen-assisted chemical vapor deposition (CVD) process” and Co catalyst nanoparticles to grow highly pure single walled carbon nanotubes (SWNTs) was demonstrated. Recently, it was reported that addition of small amounts of oxygen during CVD process dramatically increased the purity and yield of carbon nanotubes. However, this strategy could not be applied for discrete Fe nanoparticle catalysts from which appropriate yields of SWNTs could be grown directly on solid substrates, and fabricated into field effect transistors (FETs) quite efficiently. The main reason for this failure is due to the carbothermal reduction which results in SiO2 nanotrench formation. We found that the oxygen-assisted CVD process could be successfully applied for the growth of highly pure SWNTs by switching the catalyst from Fe to Co nanoparticles. The topological morphologies and p-type transistor electrical transport properties of the grown SWNTs were examined by using atomic force microscope (AFM), Raman, and from FET devices fabricated by photolithography.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

A Preliminary Experimental Study on the Development of Oxy-Fuel Combustion Heating System with $CO_2$ Recycle ($CO_2$ 재순환형 산소연소 가열시스템개발에 관한 실험적 연구)

  • Lee, Eun-Kyung;Go, Chang-Bok;Jang, Byung-Lok;Han, Hyung-Kee;Noh, Dong-Soon;Jeong, Yu-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.69-74
    • /
    • 2006
  • An Experimental study was conducted on $CO_2$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_2$ and water vapor($H_2O$) and resulting in higher $CO_2$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_2$. but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_2$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_2$ concentration in the flue gas was about 80% without $CO_2$ recycle, but increased to $90{\sim}95%$ with $CO_2$ recycle. The furnace temperature and pressure was decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

Use of High-Temperature Gas-Tight Electrochemical

  • Park, Jong-Hee;Beihai Ma;Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 1998
  • By using a gas-tight electrochemical cell, we can perform high-temperature coulometric titration and measure electronic transport properties to determine the elecronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilitized zirconia(YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressure ($pO_2=10^{-35}$ to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria $(Ca-CeO_2 \;and\; CeO_2)$, copper oxides and copper-oxide-based ceramic superconductors, transition metal oxides, $SrFeCo_{0.5}O_x,\; and \;BaTiO_2$.

  • PDF