• Title/Summary/Keyword: pumping-current

Search Result 188, Processing Time 0.031 seconds

The natural frequency measurement for a suction pile about the intrusion depth (관입깊이에 따른 석션파일 고유진동수 측정 및 분석)

  • Lee, Jong-Hwa;Kim, Min-Su;Seo, Yoon-Ho;Kim, Bong-Ki;Lee, Ju-Shin;Yu, Mu-Sung;Kwak, Dae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF

Predicting the Impact of Subsurface heterogeneous Hydraulic Conductivity on the Stochastic Behavior of Well Draw down in a Confined Aquifer Using Artificial Neural Networks

  • Abdin Alaa El-Din;Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1582-1596
    • /
    • 2005
  • Groundwater flow and behavior have to be investigated based on heterogeneous subsurface formation since the homogeneity assumption of this formation is not valid. Over the past twenty years, stochastic approach and Monte Carlo technique have been utilized very efficiently to understand the groundwater flow behavior. However, these techniques require lots of computational and numerical efforts according to the various researchers' comments. Therefore, utilizing new techniques with much less computational efforts such as Artificial Neural Network (ANN) in the prediction of the stochastic behavior for the groundwater based on heterogeneous subsurface formation is highly appreciated. The current paper introduces the ANN technique to investigate and predict the stochastic behavior of a well draw down in a confined aquifer based on subsurface heterogeneous hydraulic conductivity. Several ANN models are developed in this research to predict the unsteady two dimensional well draw down and its stochastic characteristics in a confined aquifer. The results of this study showed that ANN method with less computational efforts was very efficiently capable of simulating and predicting the stochastic behavior of the well draw down resulted from the continuous constant pumping in the middle of a confined aquifer with subsurface heterogeneous hydraulic conductivity.

Construction of an Optically Pumped Cesium Atomic Clock (광펌핑 세슘원자시계의 구성)

  • 이호성;오차환;양성훈
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.123-132
    • /
    • 1992
  • We designed and constructed the Cs beam tube which consists of a Ramsey cavity, four C-field rods, fluorescence detecting systems, and etc. for developing an optically pumped Cs atomic clock. A semiconductor laser was used for optical pumping and probing in the Cs beam. We observed Ramsey resonance signal by detecting the fluorescence signal in the probing region as the microwave frequency injected into the Ramsey cavity was scanned near 9192.6 MHz which corresponds to the "clock transition" of Cs atoms. We found that the linewidth of the Ramsey signal was 200 Hz, the magnetic field intensity was $8.61\muT$ when the current of 0.8A flowed in the C-field rods, and the second order Zeeman shift by the magnetic field was 3.17 Hz.s 3.17 Hz.

  • PDF

Measurement of excitation efficiency and passively Q-switched characteristics of laser diode end-pumped Nd:YAG laser by using $Cr^{4+}$:YAG as a saturable absorber ($Cr^{4+}$:YAG 포화 흡수체를 이용한 레이저 다이오드 뒷면 여기 Nd:YAG 레이저의 들뜸 효율 및 Q-switching 특성 연구)

  • 정태문;김광석;문희종;이종훈;김철중;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.231-235
    • /
    • 1998
  • Passively Q-switched, laser diode(LD) end-pumped Nd:YAG laser was demonstrated by using $Cr^{4+}$:YAG as a saturable absorber. In addition , we could calculate an excitation efficiency, which is an important parameter to evaluate the pumping geometry, directly by measuring the absorbed power in Nd:YAG at threshold condition. We found that output parameters such as average power, pulse duration, and repetition rate strongly depended on the low intensity transmission of $Cr^{4+}$:YAG and driving current of lase diode. The maximum Q-switched output power of 1 W was obtained with 40 kHz repetition rate. The pulse duration was varied from 50 ns to 200 ns.

  • PDF

Study on climate change response of small island groundwater resources

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.182-182
    • /
    • 2017
  • Many small island nations rely on groundwater as their only other source of freshwater in addition to rainwater harvesting. The volume of groundwater resource of small island nations are further limited by their smaller surface area and specific hydrogeology. The rapid growth of population and tourism has led to increasing water demands and pollution of available groundwater resources. The predicted climate change effects pose significant threats to the already vulnerable freshwater lens of small islands in the form of rise in sea level, coastal inundation, saltwater intrusion, varied pattern of precipitation leading to droughts and storm surges. The effects of climate change are further aggravated by manmade stresses like increased pumping. Thus small island water resources are highly threatened under the effects of climate change. But due to the limited technical and financial capacity most of the small island developing states were unable to conduct detailed technical investigations on the effects of climate change on their water resources. In this study, we investigate how well small island countries are preparing for climate change. The current state of freshwater resources, impacts of predicted climate change along with adaptation and management strategies planned and implemented by small island countries are reviewed. Proper assessment and management practices can aid in sustaining the groundwater resources of small islands under climate change.

  • PDF

Development of a Mid-infrared CW Optical Parametric Oscillator Based on Fan-out Grating MgO:PPLN Pumped at 1064 nm

  • Bae, In-Ho;Lim, Sun Do;Yoo, Jae-Keun;Lee, Dong-Hoon;Kim, Seung Kwan
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • We report development of a frequency-stabilized mid-infrared continuous-wave (cw) optical parametric oscillator (OPO) based on a fan-out grating MgO:PPLN crystal pumped at 1064 nm. The OPO resonator was designed as a pump-enhanced standing-wave cavity that resonates to the pump and signal beams. To realize stable operation of the OPO, we applied a modified Pound-Drever-Hall technique, which is a well-known method for powerful laser frequency stabilization. Tuning a poling period of the fan-out grating of the crystal allows wavelength-tunable OPO outputs from 1510 nm to 1852 nm and from 2500 nm to 3600 nm for signal and idler beams, respectively. At the idler wavelengths of 2500 nm, 3000 nm and 3500 nm, we achieved more than 50 mW of output powers at a pumping power of 1.1 W. The long-term stability of the OPO was confirmed by recording the power and wavelength variations of the idler for an hour.

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

3.2-kW 9.7-GHz Polarization-maintaining Narrow-linewidth All-fiber Amplifier

  • Hang Liu;Yujun Feng;Xiaobo Yang;Yao Wang;Hongming Yu;Jue Wang;Wanjing Peng;Yanshan Wang;Yinhong Sun;Yi Ma;Qingsong Gao;Chun Tang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.65-71
    • /
    • 2024
  • We present a Yb-doped narrow-linewidth polarization-maintaining all-fiber amplifier that achieves a high mode-instability (MI) threshold, high output power, and 9.7-GHz spectral linewidth. Six wavelength-multiplexed laser diodes are used to pump this amplifier. First, we construct a high-power fiber amplifier based on a master oscillator-power amplifier configuration for experiments. Subsequently, we examine the MI threshold by individually pumping the amplifier with wavelengths of 976, 974, 981, 974, and 981 nm respectively. The experimental results demonstrate that the amplifier exhibits a high MI threshold (>3.5 kW) when pumped with a combination of wavelengths at 974 and 981 nm. Afterward, we inject an optimized phase-modulated seed with a nearly flat-top spectrum into this amplifier. Ultimately, laser output of 3.2 kW and 9.7 GHz are obtained.

Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits (원통형 다공성 유리막을 이용한 전기삼투 펌프의 연구)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, we demonstrated the operation of an electroosmotic pump with cylindrical porous glass frits and evaluated its long-term operation. The performance of this electroosmotic pump was characterized in terms of maximum flow rate, current, and pressure using deionized water and 1 mM borate buffer. The maximum flow rate, current, and pressure linearly increase with voltage. The maximum flow rate is normalized by the pumping area and voltage for comparison of the performance between the electroosmotic pumps with cylindrical and planar frits. The normalized maximum flow rate of the cylindrical-type pump is higher than that of the planar-type pump because of their different geometries. The cylindrical-type electroosmotic pump has five times better performance than the planartype electroosmotic pump for a given pump package volume. It can operate stably for over 3 hours.

A Study on the Release of Hatch Cover in Sand Carriers (모래운반선의 창구덮개 면제를 위한 시설기준에 관한 연구)

  • Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • Only the sand carriers fitted with hopper doors can remove their hatch covers in current regulations. However, there is no sand carriers fitted with hopper doors in korea. Through the analysis of accidents, inspection of equipment installed on ships, and evaluation of stability and seakeeping performance concerning the sand carriers, it is expected that the current exemption requirement is modified for hatch covers for sand carriers. As the result, this paper proposed the removal of hatch covers and be fitted by tarpaulin instead to protect water ingress into the holds. This can be done by making the holds smaller designed to be filled full until the top of the hold without exceeding loadline. Also, the bilge pumps should have the sufficient capacity of pumping water out in the early stage of sand-water mixture to wetted condition in approximately 1 hour and be operationally ready in every voyage conditions.